期刊文献+

基于无线传感器网络的车辆分型算法 被引量:2

Vehicle classification algorithm based on wireless sensor networks
下载PDF
导出
摘要 针对现有车辆分类算法精度不高的问题,基于既有的车辆检测算法,提出一种基于决策树初次分类,K邻近算法细分的车辆分型算法,实验证明算法行之有效并取得了较好的分类效果.为了验证算法的可行性,还设计实现了停车管理系统(Parking Management System,PMS),包括终端、路由、基站节点的硬件、软件,协议栈,网络的架构以及上位机的整套监控软件.对PMS运行数月得到的数据进行分类,结果显示,分类准确率显著提高. In order to solve the low accuracy of the current vehicle classifying algorithms, this paper presents a vehicle classification algorithm based on the existed vehicle detecting algorithm, which classifies the vehicles roughly by a decision tree firstly and then decides the types of the vehicles exactly using the KNN algorithm. Proved by some experiments,this algorithm works well and has a good classifying performance. Moreover,in order to test and verify the feasibility of this algorithm,this paper sets up a PMS(Parking Management System)which includes the design and implementation of the hardware and software of end devices, routes, base station, the ZigBee protocol stack, the network structure and the whole monitoring software of the server. By analyzing and classifying the PMS data, which are collected from the system run for several months, the proposed algorithm gets higher vehicle classifying accuracy than the existing methods.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期655-663,共9页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(61075019) 重庆市自然科学基金(CSTC2011jjA40045)
关键词 无线传感器网络 地磁传感器 车辆分型 决策树 K邻近 wireless sensor networks, magnetic sensor, vehicle classification, decision tree, KNN
  • 相关文献

参考文献9

二级参考文献68

共引文献211

同被引文献23

  • 1周贤伟,王培,覃伯平,申吉红.一种无线传感器网络异常检测技术研究[J].传感技术学报,2007,20(8):1870-1874. 被引量:13
  • 2曹冬磊,曹建农,金蓓弘.一种无线传感器网络中事件区域检测的容错算法[J].计算机学报,2007,30(10):1770-1776. 被引量:29
  • 3李彦兵.基于微多普勒效应的运动车辆目标分类研究[D].西安:西安电子科技大学,2013.
  • 4冯佳明.基于特征的车辆分类研究[D].昆明:云南大学,2011.
  • 5WenChung Chang, ChihWei Cho. Online boosting for vehicle detection[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010,40(3): 892 -902.
  • 6Wang Zhiwen, Li Shaozi. Research for automatic recognition for vehicle based on improved BP network[C]//Proceedings of 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering: 105-108.
  • 7Mukherjee I, Rudin C, Schapire R E. The rate of convergence ofAdaBoost[C]//Proceedings of the 24th Annual Conference on Learning Theory. Budapest, Hungary: JMLR, 2011 : 559-594.
  • 8Subramaniam S, Palpanas T, Papadopoulos D, et al. Online outlier detection in sensor data using non-parametric models. In: Proceedings of the 32"d International Conference on Very Large Data Bases. Almaden, Spanish, VLDB Endowment, 2006,187--198.
  • 9Perrig A, Stankovic J, Wagner D. Security in wireless sensor networks. Communications of the ACM,2004,47(6) ,53--57.
  • 10Martincic F, Schwiebert L. detection in sensor networks. Conference on Systems Communication. IEEE, 2006,43 Distributed event In: International and Networks.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部