期刊文献+

改进免疫算法在函数优化中的应用 被引量:1

Improved immune algorithm and its application in function optimization
下载PDF
导出
摘要 为了提高和加强免疫算法的搜索能力,本文在已有克隆选择算法(CSA)分析的基础上,提出利用生物的进化过程中子代抗体比父代抗体离最优解的启发性信息更近的原理,这种新的偏心动态免疫克隆算法简称EDICA。这种算法首先制定偏心变异的策略,并对其进行分析,目的是加快靠近最优解的速度和效率,以此提高免疫算法的精度。本文的实验结果显示出EDICA具有准确找到静态函数的能力和高精度锁定跟踪动态函数的优势。 In order to improve and strengthen the searching ability of immune algorithm, based on the existing clonal selection algorithm ( CSA ) based on the analysis, proposes the use ofbio logical evolution of neutrongener ation antibody than the principle of parent ant ihody closer to the optimal solution of heuristic information, the eccentric dynamic immune c]onal al gorithm of this new EDICA. This algorithm first develop edeceent ricmutation strategy, and carries on the analysis, the purpose is to speed up thenear optimal solution speed and efficiency, so as to improve the accuracy of immuneal gorithm.The experimental result sshow that EDICA has the ability of accurate finds tatic function and high precision track dynamic function advantage.
作者 张慧军
出处 《齐齐哈尔大学学报(自然科学版)》 2013年第5期55-57,共3页 Journal of Qiqihar University(Natural Science Edition)
关键词 克隆选择算法 免疫算法 函数优化 clonal selection algorithm immune algorithm function optimization
  • 相关文献

参考文献3

二级参考文献35

  • 1罗印升,李人厚,张维玺.基于免疫机理的动态函数优化算法[J].西安交通大学学报,2005,39(4):384-388. 被引量:6
  • 2L N de Castro, F J V Zuben. Learning and optimization using the clonal selection principle[ J]. IEEE Transactions on Evolu- tionary Computation. 21302,6(3) : 239 - 251.
  • 3Liu Ruochen, Chen Li, Wang Shuang. Immune clonal slrategies based on three mutation methods[A]. Proceedings of the 2th International Conference on Natural Computation [ C J. Berlin, Heidel-berg: Springer-Verlag. 2006.114 - 121.
  • 4L Hong, Z C Mu. A novel clonal chaos adjusanent algorithm[A]. Proceedings of the 26th Chinese Control Conference[C ]. 2007.710 - 714.
  • 5Y He, C B Jian. Clonal selection algorithm with adaptive mutation and roulette wheel selection[ A ]. The 20th IEEE Intemational Conference on Micro Electro Mechanical Systems[ C ]. Piscataway, NJ, USA: IEEE. 2007.93 - 96.
  • 6R L Becerra, C A Coello. Cultured differential evolution for constrained optimization [ J ]. Computer Methods in Applied Mechanics and Engineering. 2006,195: 4303 - 4322.
  • 7Bin Peng. Knowledge and population swarms in cultural algorithms for dynamic environments[ D ]. USA: Wayne State University. 2005.
  • 8Chung J S, Jung H K, Hahn S Y. A Study on Comparison of Optimization Performances between Immune Algorithm and Other Heuristic Algorithms. IEEE Trans on Magnetics, 1998,34(5) : 2972-2975
  • 9Trojanowski K, Michalewicz Z. Evolutionary Optimization in Non-Stationary Environments. Journal of Computer Science and Technology, 2000, 1(2): 93-124
  • 10Jin Y C, Branke J. Evolutionary Optimization in Uncertain Environments: A Survey. IEEE Trans on Evolutionary Computation, 2005, 9(3): 303-317

共引文献34

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部