摘要
首先利用欧拉积分理论,证明余元公式的特殊情形.继而借助正弦函数的无穷乘积展开式及Γ函数定义,证明余元公式的一般情形.最后应用该公式,解决一些按通常方法不易计算的积分问题.
At first, we use the theory of Euler integrals to prove special circumstances of Bicomplementray fromula and then with the help of infinite product expansion of sine function and the definition of Gamma function to prove general circumstances of Bicomplementray formula. Finally, we use the formula to solve some issues of integrals that can't be calculated easily according to the usual methods.
出处
《大学数学》
2013年第5期81-86,共6页
College Mathematics
关键词
欧拉积分
Γ函数
无穷乘积
Euler integrals
Gamma function
infinite product