期刊文献+

《高等数学》中的“爱尔兰根纲领”及其应用 被引量:1

‘Erlangen Program'and It's Application in Advanced Mathematics
下载PDF
导出
摘要 "爱尔兰根纲领"是几何学史上一篇划时代的文献,它提出的"变换下的几何不变量"思想对几何、代数乃至其后整个数学的发展都产生了广泛而深刻的影响.然而,这一重要思想在高等数学中的体现和应用却鲜为人注意.为此,本文详细探讨了"爱尔兰根纲领"的思想在高等数学内容中的体现以及它在高等数学中的应用. 'Erlangen Program' is one of the landmarks in the history of geometry development. Its concept of "geometrical invariant under transformation groups" has a broad and profound influence on geometry , algebra and even the whole development of mathematics. But the demonstration and application of the important concept in advanced mathematics are under rare attention. So the paper goes into detail about the concept's demonstration and application in advanced mathematics.
出处 《大学数学》 2013年第5期148-151,共4页 College Mathematics
关键词 爱尔兰根纲领 不变量思想 数学思想方法 Erlangen program concept of invariant the mathematics thought
  • 相关文献

参考文献8

二级参考文献32

  • 1张建梅.大学数学中数学思想方法渗透教学的探讨与实践[J].广东科技,2005,14(7):57-58. 被引量:2
  • 2巴桑卓玛.大学数学重在介绍思想和方法[J].西藏科技,2005(9):22-24. 被引量:9
  • 3FRIEDRICH G C. Translated by Arthur A Clarke. Disquisitiones Arithmeticae [ M ]. New Haven and London : Yale University, 1966 : 108-375.
  • 4WOLFSON P R. George Boole and the Origins of Invariant Theory [ J]. Historia Mathematica,2008,35:37-46.
  • 5TONY C. The Rise of Cayley's Invariant Theory( 1841- 1862 ) [ J ]. Historia Mathematica, 1986,13:241-254.
  • 6TONY C. The Decline of Cayley's Invariant Theory ( 1863-1895) [J]. Historia Mathematica,1988,15:332-347.
  • 7KOLMOGOROV A N, YUSHKEVICH A P. Translated from Russian by Shenitzer A, Grant tt and Sheinin O.B. Mathematics of the 19th Century [ M ]. Basel, Switzerland: Birhauser,2001:80-86.
  • 8LEO C. Modern Algebra and the Rise of Mathematical Structures [ M ]. Basel, Switzerland : Birhauser, 1996 : 138-147.
  • 9GARDNER R B. The Invariant Theory [J]. Bulletin of the American Mathematical Society ( new series), 1980,2 : 246-256.
  • 10IGOR D. Lectures on Invariant Theory [ M ]. Cambridge: Cambridge University Press ,2003:52-61.

共引文献32

同被引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部