期刊文献+

决策表中属性的重排

Attribute derangement in decision tables
原文传递
导出
摘要 研究决策表中属性的重排。对同一个决策表,把其中不同的属性分别指定为结论属性,借助决策表中属性之间的约简和冗余关系判别哪种重排可以导致粗糙集以及哪种属性重排导致非粗糙集。提出了属性重排粗糙度的概念,基于属性重排粗糙度提出了属性最佳逻辑流向、最佳逻辑属性等概念。分析并指出不同属性重排所对应的粗糙度和属性最佳逻辑流向反映了决策表中不同属性之间的因果蕴含关系。数值算例表明,利用决策表的属性重排可以有效地对缺失数据进行插补。 Attribute derangement in decision tables was proposed. Based on the redundant relations between attributes, the criteria was given for judging which kind of derangement led to rough set and which one would not. The notion of derangement roughness was proposed and then the notion of best logic attribute and the best attribute logic flow were put forward. It was shown that the best attribute logic flow reflected the causal relations between different attributes in deci sion tables. Numerical experiment showed that missing data could be imputed effectively by using attribute derange ment.
作者 高峰 迟春梅
出处 《山东大学学报(工学版)》 CAS 北大核心 2013年第5期6-12,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(31271077)
关键词 粗糙集 属性重排 属性重排粗糙度 属性最佳逻辑流向 缺失数据插补 rough set attribute derangement derangement roughness best attribute logic flow imputation of missing data
  • 相关文献

参考文献18

  • 1PAWLAK Z. Rough sets [ J ]. International Journal of Parallel Programming, 1982, 11(5) :341-356.
  • 2PAWLAK Z. Rough sets-theoretical aspects of reasoning about data [ M ]. DorDreht: Kluwer Academic Publisher, 1991 : 1-250.
  • 3DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[ J]. International Journal of General Systems, 1990, 17 (2-3) : 191-209.
  • 4GRECO S, MATARAZZO B, SLOWINSKI R, et al. Rough sets theory for multi-criteria decision analysis[ J]. European Journal of Operational Research, 2001, 129 (1) :1-47.
  • 5YAO Y Y, YAO B X. Covering based rough set approxi- mations[J]. Information Sciences, 2012, 200( 1 ): 91- 107.
  • 6李华雄,周献中,李天瑞,等.决策粗糙集理论及其研究进展[M].北京:科学出版社,2011.
  • 7李道国,苗夺谦.粗糙集理论、算法与应用[M].北京:清华大学出版社,2008:1-200.
  • 8FENG F, LI C X, DAVVAZ B, et al. Soft sets com- bined with fuzzy sets and rough sets : a tentative approach [J]. Soft Computing, 2010, 14(9) :899-911.
  • 9THOMAS K, NAIR L. Rough intuitionistic fuzzy sets in a lattice[ J]. International Mathematical Forum, 2011, 6 (27) : 1327 -1335.
  • 10杨习贝,黄佳玲,周君仪,杨静宇.不完备系统中基于特征相容块的粗糙集[J].山东大学学报(工学版),2012,42(5):1-6. 被引量:2

二级参考文献47

  • 1乔珠峰,田凤占,黄厚宽,陈景年.缺失数据处理方法的比较研究[J].计算机研究与发展,2006,43(z1):171-175. 被引量:13
  • 2张其文,李明.一种缺失数据的填补方法[J].兰州理工大学学报,2006,32(2):102-104. 被引量:7
  • 3[1](美)Kish L.抽样调查[M].倪加勋,等译.北京:中国统计出版社,1997.624-625.
  • 4[3](美) Donald B Rubin. Multiple Imputation For Nonresponse In Surveys[ M] . New York :John Wiley & Sons Inc, 1987.15 -23.
  • 5Baraldi A.N. Enders C. K. An introduction to modern missing data analyses[J]. Journal of School Psychology. 2010(48 ) :5 - 37.
  • 6Angiulli F. lanni G. Palopoli L. On the complexity of inducing categorical and quantitative association rules [J]. Theoretical Computer Science. 2004(314) :217 - 249.
  • 7Huang,C. C. , A Case - Based Reasoning Model for Supporting Feature Weight and Missing Value Completion [ J ], Industrial and Information Management, NCKU. 2005.
  • 8Gustavo E. A. P. A. Batista and Maria Carolina Monard, AnAnalysis of Four Missing Data Treatment Methods for Supervised Learning[J], Applied Artificial Intelligence, 2003 ( 17 ) : 519 - 533.
  • 9Liu, W.Z, White, A.P. , Thompson, S.G. and Bramer, M. A.Techniques for Dealing with Missing Values in Classification [ J ] , International Symposium on intelligent Data Analysis, 1997:527 - 536.
  • 10Liang, T. H., Wang, C. Y., and Yang, Y. H. A study ofImputation Missing Data for Household Income[J], Journal of Data Analysis, 2006(4) :75 - 101.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部