期刊文献+

广义估计方程中工作相关阵选择准则的比较(英文)

Comparison of Criteria to Select Working Correlation Matrix in Generalized Estimating Equations
下载PDF
导出
摘要 在本文中,我们比较了广义估计方程中相关阵基于高斯伪似然、修正的高斯伪似然和经验似然的选择方法.通过大量的模拟研究,我们发现修正的高斯伪似然方法优于其他两种方法.对二项离散模型,经验似然方法在选择可交换相关结构时有更好的表现.最后,通过两个实例分析,进一步分析了各个选择方法之间的优劣性. In this paper, we compare two modified Gaussian pseudolikelihood criteria (GPCs) with ex- isting Gaussian pseudolikelihood criterion and empirical likelihood based criteria to choose the working correlation matrix in generalized estimating equations approach. Rich simulation studies are conducted to investigate the performance of these criteria under a range of model settings. The results show that the modified criteria outperform the original GPC and empirical likelihood based criteria in most cases in terms of selection accuracy. Empirical likelihood based criteria perform better to identify exchangeable structure in data with binary response. In the end, these criteria are applied to epilepsy seizure and Madras longitudinal schizophrenia study clinical data sets analysis.
出处 《应用概率统计》 CSCD 北大核心 2013年第5期515-530,共16页 Chinese Journal of Applied Probability and Statistics
基金 supported by National Natural Science Foundation of China(11271080)
关键词 纵向数据 模型选择 伪似然 经验似然 Longitudinal data, model selection, pseudolikelihood, empirical likelihood.
  • 相关文献

参考文献14

  • 1Akaike, H., Information theory and an extension of the maximum likelihood principle, In Petrov, B.N. and Csaki, F. (Eds.), Second International Symposium on Information Theory, Budapest: Akademiai Kiado, 1973, 267-281.
  • 2Bai, Y., Fung, W.K. and Zhu, Z.Y., Weighted empirical likelihood for generalized linear models with longitudinal data, Journal of Statistical Planning and Inference" 140(11)(2010), 3446-3456.
  • 3Carey, V.J. and Wang, Y.-G., Working covariance model selection for generalized estimating equa?tions, Statistics in Medicine, 30(26)(2011), 3117-3124.
  • 4Chen, J. and Lazar, N.A., Selection of working correlation structure in generalized estimating equa?tions via empirical likelihood, Journal of Computational and Gmphical Statistics, 21(1)(2012), 18-41.
  • 5Dalthorp, D. and Madsen, L., Simulation of correlated count-valued random variables: Brief descrip?tion, Available at http://www.stat. oregonstate. edu/node/3709.
  • 6Diggle, P.J., Heagerty, P., Liang, K.Y. and Zeger, S.L., Analysis of Longitudinal Data, Oxford Uni?versity Press: Oxford, 2002.
  • 7Hall, D.B. and Severini, T.A., Extended generalized estimating equations for clustered data, Journal of the American Statistical Association, 93(444)(1998), 1365-1375.
  • 8Hin, L.Y., Carey, V.J. and Wang, Y.-G., Criteria for working-correlation-structure selection in GEE: Assessment via simulation, The American Statistician, 61 ( 4) (2007), 360-364.
  • 9Hin, L.Y. and Wang, Y.-G., Working-correlation-structure identification in generalized estimating equations, Statistics in Medicine, 28(4)(2009), 642-658.
  • 10Liang, K.Y. and Zeger, S.L., Longitudinal data analysis using generalized linear models, Biometrika, 73(1)(1986), 13-22.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部