摘要
针对中国汽车工业协会的汽车历史销量数据,利用时间序列法和RBF神经网络法进行汽车销售量预测,利用SPSS18.0统计软件建立了RBF神经网络模型,最终对几种预测方法进行了对比研究。结果证明:RBF神经网络具有更精确的预测值。
Based on historical sales data from China Association of Automobile Manufacturers, the automotive sales were predicted using the time series method and RBF neural network method. RBF neural network model was realized by statistical software SPSS18.0 Several forecasting methods were compared, and the results show RBF neural network has better forecasting value.
出处
《湖北汽车工业学院学报》
2013年第3期77-80,共4页
Journal of Hubei University Of Automotive Technology
基金
湖北汽车工业学院大学生创新性项目(SJ201243)
湖北省教育厅科学技术研究项目(B20092306)
关键词
数据挖掘
汽车销售
销售预测
data mining
automotive sales
sales forecasting