期刊文献+

基于贝叶斯算法的垃圾邮件过滤器的模拟实现

Simulation and Implementation of Spam Filter Based on Bayesian Algorithm
下载PDF
导出
摘要 对贝叶斯算法进行了深入分析与研究。在过滤算法设计中,研究发现基于贝叶斯算法的过滤模拟器运算的错误率与选取的敏感词汇数量有关,选取的敏感词汇与邮件训练集的数量越多,设计的邮件过滤器的正确率就越高。综合考虑了实用性和经济性,在选取训练集数量和敏感词汇数量时,根据实际情况选择了一个度,设计了一个基于贝叶斯算法的垃圾邮件模拟过滤模型。 This paper analyzes the Bayesian algorithms. It is found that the error rate of the emulator based on Bayesian filtering is related to the selected number of training sensitive words. The correct rate of the designed spam filter is higher with higher selected number and more train- ing sets. However, considering practicality and economy, we set a degree to select the number of training sets and sensitive words according to actual situation. Availability and economy are con- sidered, and a filter model based on Bayesian for the spam is designed.
出处 《上海电机学院学报》 2013年第4期224-228,共5页 Journal of Shanghai Dianji University
基金 上海市大学生创新计划项目资助(2012SCX15) 上海电机学院科研启动经费项目资助(13DX02) 上海电机学院重点学科资助(13XKJ01)
关键词 互联网 电子邮件 垃圾邮件过滤 贝叶斯算法 Internet e-mail spare filter simple Bayesian algorithm
  • 相关文献

参考文献10

  • 1中国互联网协会反垃圾信息中心.2011年第三季度中国反垃圾邮件状况调查报告[EB/OL].(20120320)[2013-01-05].http://www.12321.org.cn/fljyj/bgcp/newsinfo_5492.html.
  • 2网络不良与垃圾信息举报受理中心.2012Q4中国电子邮箱用户平均每周收到垃圾邮件14.8封[EB/OL].(2013-04-11)[20130511].http://12321.cn/viewnews.php?id-17556.
  • 3GrahamP.BetterBayesianFiltering[EB/0L].(20130l01)[2013-04-18].http://www.paulgra-ham.com/better.html.
  • 4于海涛.抽样技术在数据挖掘中的应用研究[M].合肥:合肥工业大学,2006:45-56.
  • 5周立兵,柳景超.贝叶斯理论在垃圾邮件过滤中的应用分析[J].网络安全技术与应用,2006(11):68-69. 被引量:1
  • 6Levine J,Crocker D, Silberman S, et al. Bounce ad- dress tagvalidetion [EB/OL]. ( 2007-01-01 ) [ 2013- 01-13 ]. http:// mipassoc, org/batv/draft-levine- batv-03, html.
  • 7Chakrabarti S,Cox E, Gting R H, et al. Data min- ing: Know it aI1[M]. San Francisco, CA, USA: Margan Kanfmann Publishers Inc. ,2008.
  • 8Razor. Vipul's Razor; Reference Description [ EB/ OL]. (2007 -05- 10) [2009-08-06]. http: // razor. soureeforge, net/.
  • 9Zheleva E, Kolcz A, Getoor L. Trusting spam re porters: A reporter-based reputation system for email filtering[J]. ACM Transactions on Informa- tion System(TOIS), 2008,27 ( 1 ) : 1-37.
  • 10崔超,吴双,张宪忠,张志军,赵京磊.基于贝叶斯概率理论的防火墙技术研究[J].北京理工大学学报,2012,32(8):801-804. 被引量:7

二级参考文献13

  • 1张启蕊,张凌,董守斌,谭景华.训练集类别分布对文本分类的影响[J].清华大学学报(自然科学版),2005,45(S1):1802-1805. 被引量:26
  • 2张铭锋,李云春,李巍.垃圾邮件过滤的贝叶斯方法综述[J].计算机应用研究,2005,22(8):14-19. 被引量:23
  • 3戴劲松,白英彩.基于贝叶斯理论的垃圾邮件过滤技术[J].计算机应用与软件,2006,23(1):110-111. 被引量:16
  • 4Kush E N. Learning to remove internet advertisements [C]// Proceedings of the 3rd International Conference on Autonomous Agents. Seattle, Washington:[s. n. ], 1999:175 - 181.
  • 5Hall R J. How to avoid unwanted E-mail [ J ]. Communication of ACM, 1998,41(3):88 - 95.
  • 6Cohen W W. Learning rule that classify E-mail[C]// Proceedings of the AAAI Spring Symposium on Machine Learning in Information Access. Stanford, USA: [s. n. ],1996:47 - 52.
  • 7Mooney R J, Roy L. Content-based book recommending using learning for text categorization[C]// Proceeding of the SIGIR-99 Workshop on Recommender Systems: Al-gorithms and Evaluation. Berkely, USA: [s. n. ],1999 : 78 - 93.
  • 8Graham P. Better Bayesian filtering[EB/OL]. [2005-08-05]. http://paulraham. com/better. html.
  • 9FRIEDMAN N;GEIGER D;GOLDSZMIDT M.Bayesian network classifiers,1997.
  • 10I Androutsopoulos.Learning to Filtering Unsolicited Commercial E-mail,2004.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部