期刊文献+

3维大脑核磁共振图像隐私信息剔除方法

Facial De-identification in Three-dimensional Magnetic Resonance Images of Human Brain
下载PDF
导出
摘要 在神经影像研究中,患者的面部特征有时可以通过3维表面重建技术从影像中复原,这使得患者身份隐私信息泄漏存在潜在可能。为了解决这一问题,提出一种自动化面部特征剔除算法,从海量多模态大脑核磁共振影像中自动剔除患者身份相关的面部特征信息。该方法基于一种新提出的多分辨分层特征向量匹配方法来准确定位3维影像中的解剖学点标记,并通这种匹配方法从多模态磁共振影像中确定患者面部特征相关的解剖结构的空间位置,并以此为基础估计出一个最优3维剔除平面来剔除患者面部特征信息。最后,通过实验验证了该方法的有用性和可靠性。 In neuroimaging studies,subject's identity can sometimes be recovered from volumetric brain MR images via three-dimensional surface reconstruction or volume rendering techniques and directly leads to the violation of privacy protection regulations in medical applications. To address these concerns,a novel method for facial de-identification was developed to automatically remove facial feature from multi-modality brain MR images. A multi-resolution hierarchical feature vector based matching framework was proposed and applied to accurately locate several facial feature-related key points in the 3D brain MR images. An optimal 3D plane which cut through these detected key points was estimated and used to remove facial voxels from MR images. Experiments were conducted to validate the usefulness and applicability of the proposed method.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2013年第5期51-56,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 美国国家卫生院阿兹海默神经影像倡议(ADNI NIHGrant U01 AG024904) 国家自然科学基金资助项目(81173356)
关键词 核磁共振 大脑 点标记 数据驱动 面部特征 3维重建 magnetic resonance imaging brain point landmark data-driven facial feature three-dimensional reconstruction
  • 相关文献

参考文献16

  • 1Petersen R C, Aisen P S, Donohue M C, et al. Alzheimer' s disease neuroimaging initiative (ADNI) clinical character- ization [ J ]. Neurology, 2010,74 ( 3 ) : 201 - 209.
  • 2Jack C R, Bernstein M A, Fox N C. The Alzheimer's disease neuroimaging initiative (ADNI) : MRI methods [ J ]. Journal of Magnetic Resonance Imaging,2008,27(4) :685 -691.
  • 3Marcus D S, Wang T H, Parker J, et al. Open access series of imaging studies (OASIS) : Cross-sectional MRI data in young, middle aged, nondemented, and demented older a- dults [ J ]. Journal of Cognitive Neuroscience, 2007,19 ( 9 ) : 1498 - 1507.
  • 4McEvoy L K, Fennema-Notestine C, Roddey J C, et al. Alzheimer disease:Quantitative structural neuroimaging for detection and prediction of clinical and structural changes in Mild Cognitive Impairment [ J ]. Radiology, 2009,251 ( 1 ) : 195 - 205.
  • 5Mueller S G, Weiner M W, Thai L J, et al. Ways toward an early diagnosis in Alzheimer' s disease:The Alzheimer' s Disease Neuroimaging Initiative (ADNI) [ J ]. Alzheimer' s and Dementia,2005,1 ( 1 ) :55 - 66.
  • 6Pechaud M, Jenkinson M, Smith S. BET2-MRI based estima- tion of brain, skull and scalp surfaces[ R]. FMRIB Technical Report TR06MP1, Oxford University Centre for Functional MRI of the Brain (FMRIB) ,2006.
  • 7Smith S M. Fast robust automated brain extraction [ J ]. Hu- man Brain Mapping,2002,17 (3) : 143 - 155.
  • 8Fennema-Notestine C,Ozyurt I B,Clark C P. Quantitative e- valuation of automated skull-stripping methods applied to contemporary and legacy images : Effects of diagnosis, bias correction, and slice location [ J ]. Human Brain Mapping, 2005,27(2) :99 - 113.
  • 9Bischoff-Grethe A, Ozyurt I B, Busa E. A technique for the deidentification of structural brain MR images [ J ]. Human Brain Mapping, 2007,28 (9) : 892 - 903.
  • 10Shattuck D W, Rex D E, Darvas F, et al. JohnDoe : Anony- mizing MRI data for the protection of research, subject confi- dentiality [ C ]. 9th Annual Meeting of the Organization for Human Brain Mapping,New York,2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部