期刊文献+

一种适用于多类问题的神经网络集成模型 被引量:1

A Neural Network Ensemble Model Adapted to Multi-class Problem
原文传递
导出
摘要 提出了一种基于集成学习的适于多类问题的神经网络集成模型,其基本模块由一个OAA方式的二类别分类器和一个互补多类分类器组成.测试表明,该模型在多类问题上比其他经典集成算法有着更高的精度,并且有较少存储空间和计算时间的优势. A new neural network ensemble model based on ensemble learning model adapted to multi-class problem is proposed. The base components of the proposed model are composed by the union of a binary classifier of OAA and a complementary multi-class classifier. Experimental results show that the model has higher accuracy than other classical ensemble algorithms for multi-class problems, and it has the superiority of less storage space and computation time.
出处 《信息与控制》 CSCD 北大核心 2013年第5期583-588,共6页 Information and Control
基金 国家自然科学基金资助项目(60835004) 湖南省教育厅青年项目(10B109) 湖南省重点学科资助项目
关键词 集成学习 神经网络 多类问题 ensemble learning neural network multi-class problem
  • 相关文献

参考文献2

二级参考文献79

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303.
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121.
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106.

共引文献146

同被引文献3

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部