摘要
提出了一种基于集成学习的适于多类问题的神经网络集成模型,其基本模块由一个OAA方式的二类别分类器和一个互补多类分类器组成.测试表明,该模型在多类问题上比其他经典集成算法有着更高的精度,并且有较少存储空间和计算时间的优势.
A new neural network ensemble model based on ensemble learning model adapted to multi-class problem is proposed. The base components of the proposed model are composed by the union of a binary classifier of OAA and a complementary multi-class classifier. Experimental results show that the model has higher accuracy than other classical ensemble algorithms for multi-class problems, and it has the superiority of less storage space and computation time.
出处
《信息与控制》
CSCD
北大核心
2013年第5期583-588,共6页
Information and Control
基金
国家自然科学基金资助项目(60835004)
湖南省教育厅青年项目(10B109)
湖南省重点学科资助项目
关键词
集成学习
神经网络
多类问题
ensemble learning
neural network
multi-class problem