期刊文献+

基于迭代容积粒子滤波的蒙特卡洛定位算法 被引量:19

A Monte-Carlo Localization Algorithm Based on Iterated Cubature Particle Filter
原文传递
导出
摘要 利用容积卡尔曼滤波来设计粒子滤波器的重要性密度函数,并将当前的测量信息迭代到贯序重要性采样(SIS)过程中,进而提出一种基于迭代容积粒子滤波的RSSI(received signal strength indicator)蒙特卡罗定位算法.该算法使用迭代容积粒子滤波对目标位置和无线信道衰减参数同时进行估计,采用迭代的方式对测量方程进行更新,进一步提高无线信道衰减参数的估计精度.仿真结果表明,基于迭代容积粒子滤波的RSSI蒙特卡罗定位算法对比基于无味粒子滤波的RSSI定位算法,能够有效降低室内无线定位的误差. A received signal strength indicator (RSSI) Monte-Carol localization algorithm based on iterated cubature particle filter is proposed, in which the importance density function of particle filter is designed with cubature Kalman filter, and current measurement information is introduced into sequential importance sampling (SIS) routine by iterating. This algorithm utilizes iterated cubature particle filter (ICPF) to estimate the target's position and the wireless channel attenuation parameter simultaneously, updates the measurement equation with iteration, and gets a more accurate estimation of attenuation param- eter for wireless channel. The experimental results demonstrate that compared with the RSSI parameter estimation algorithm based on unscented particle filter, and there is an improvement of error for the received signal strength indicator Monte-Carol localization algorithm based on ICPF in the indoor wireless localization.
出处 《信息与控制》 CSCD 北大核心 2013年第5期632-638,共7页 Information and Control
基金 国家自然科学基金资助项目(61172130)
关键词 室内定位 接收信号强度指示(RSSI) 蒙特卡罗定位(MCL) 容积卡尔曼滤波(CKF) indoor localization received signal strength indication (RSSI) Monte-Carlo localization (MCL) cubature Kalman filter (CKF)
  • 相关文献

参考文献14

  • 1Tateishi K, Lkegami T. Estimation method of attenuation con- stant during localization in RSS! [C]//Proceedings of 2008 In- ternational Symposium on Communications and Information Technologies. Piscataway, NJ, USA: IEEE, 2008: 482-487.
  • 2Awad A, Frunzke T, Dressier E Adaptive distance estimation and localization in WSN using RSSI measures[C]//The 10th Eu- romicro Conference on Digital System Design Architectures, Methods and Tools. Piscataway, NJ, USA: IEEE, 2007: 471- 478.
  • 3Kong Y, Kwon Y, Park G. Robust localization over ob- structed interferences for inbuilding wireless applications[J]. IEEE Transactions on Consumer Electronics, 2009, 55(1): 101- 105.
  • 4Khan Z, Balch T, Dellaert E MCMC-based particle filtering for tracking a variable number of interacting targets[J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1818.
  • 5van der Merwe R, de Freitas N, Doucet A, et al. The unscented particle filter[R]. Cambridge, UK: Cambridge University, 2000.
  • 6武二永,项志宇,刘济林.鲁棒的机器人蒙特卡洛定位算法[J].自动化学报,2008,34(8):907-911. 被引量:13
  • 7Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269.
  • 8Song , Li Q L, Kang Y F, et al. Square-root cubature fast SLAM algorithm for mobile robot simultaneous localiza- tion and mapping[CJ//Intemational Conference on Mechatron-ics and Automation. Piscataway, NJ, USA: IEEE, 2012:1162- 1167.
  • 9Tang X J, Wei J L, Chela K. Square-root adaptive cubature Kalman filter with application to spacecraft attitude estima- tion[C]//2012 15th International Conference on Information Fu- sion. Piscataway, NJ, USA: IEEE, 2012: 1406-1412.
  • 10Chen H M. Adaptive cubature Kalman filter for nonlinear state and parameter estimation[C]//2012 15th International Confer- ence on Information Fusion. Piscataway, NJ, USA: IEEE, 2012: 1413-1420.

二级参考文献33

  • 1方正,佟国峰,徐心和.一种鲁棒高效的移动机器人定位方法[J].自动化学报,2007,33(1):48-53. 被引量:15
  • 2Sanjeev A, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/nomGaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 3Dellaertt F, Fox D, Burgaxd W, Thrun S. Monte Carlo localization for mobile robots. In: Proceedings of IEEE Inter- national Conference on Robotics and Automation. Detroit, USA: IEEE, 1999. 1322-1328.
  • 4Thrun S, Fox D, Burgard W, Dellmert F. Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 2001, 128(1-2): 99-141.
  • 5Fox D. Adapting the sample size in particle filters through KLD-sampling. International Journal of Robotics Research, 2003, 22(12): 985-1103.
  • 6Lenser S, Veloso M. Sensor resetting localization for poorly modeled mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000. 1225-1232.
  • 7Ueda R, Arai T, Sakamoto K, Kikuchi T, Kamiya S. Expansion resetting for recovery from fatal error in Monte Carlo localization-comparison with sensor resetting methods. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan: IEEE, 2004. 2481-2486.
  • 8Khan Z, Balch T, Dellaert F. MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1805-1918.
  • 9van der Merwe R, de Freitas N, Doucet A, Wan E. The Unscented Particle Filter, Technical Report CUED/FINFENG/TR 380, Department of Engineering, Cambridge University, UK, 2000.
  • 10Wu H, Sun F C, Liu H P. Fuzzy particle filtering for uncertain systems. IEEE Transactions on Fuzzy Systems, 2008, 16(5): 1114-1129.

共引文献36

同被引文献122

  • 1孔勇平.矢量量化LBG算法的研究[J].硅谷,2008,1(6):39-40. 被引量:7
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3孙佩刚,赵海,罗玎玎,张晓丹,尹震宇.智能空间中RSSI定位问题研究[J].电子学报,2007,35(7):1240-1245. 被引量:75
  • 4张恒,樊晓平,瞿志华.基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究[J].自动化学报,2007,33(9):941-946. 被引量:14
  • 5Chen L,Brian K,,Jamie E.Theoretical Characterization of Nonlinear Clipping Effects in IM/DD Optical OFDM Sys.tems[J].IEEE Transactions on Communications,2012,60(8):2304-2312.
  • 6Xia K,Wu Y,Ren X,et al. Research in Clustering Algo-rithm for Diseases Analysis [J]. Journal of Networks,2013,8(7): 1632-1639.
  • 7Xia K,Cai J,Wu Y. Research on Improved Network DataFault- Tolerant Transmission Optimization Algorithm[J].Journal of Convergence Information Technology,2012,7(19):208-213.
  • 8S Haykin. Cognitive radar : a way of the future [ J ]. IEEE Signal Processing Magazine,2006,23 ( 1 ) : 30 - 40.
  • 9S Haykin. Cognition is the key to the next generation of radar sys- tems[ C]. Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, IEEE. 2009:463 - 467.
  • 10S Haykin, Amin Zia, I Arasaratnam, Xue Yanbo. Cognitive tracking radar[ C]. Radar Conference, IEEE. 2010:1467 - 1470.

引证文献19

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部