期刊文献+

锂离子电池Si/C/石墨复合负极材料的电化学性能 被引量:8

Electrochemical Performance of Silicon/Carbon/Graphite Composite Anode for Lithium Ion Batteries
下载PDF
导出
摘要 采用热裂解方法,热解分散于聚偏二氟乙烯溶液中的硅和石墨,得到了具有稳定电化学循环性能的Si/C/石墨复合负极材料。透射电子显微镜观察发现,复合材料形貌为无定型碳包裹硅颗粒的核壳结构。通过系统研究不同Si粒径和石墨含量对电极电化学性能的影响,发现Si颗粒粒径越小复合材料电化学循环稳定性能越优越,适当的降低石墨含量有利于电极材料剩余比容量的提高。当Si粒径为50 nm,Si与石墨质量比1:1时,电极材料具有1741.6 mAh/g的首次放电比容量和72.5%的首次库仑效率,60次循环后,可逆比容量保持在820 mAh/g。热解有机物形成碳包覆的结构能有效地改善硅基类负极材料的电化学循环性能。 Silicon and graphite with polyvinylidene fluoride as the matrix was pyrolyzed to obtain the Si/C/graphite composite anode with the stable and excellent electrochemical performance. The morphology of the composite was characterized by transmission electron microscope (TEM). The result showed that the composite had core-shell structure in which silicon particles were wrapped by the amorphous carbon. The effects of the silicon particle size and the graphite content on the electrode electrochemical performance were investigated systematically. It reveals that the fine size of silicon particles is beneficial to obtain a stable electrochemical performance. The appropriate content ratio of graphite and silicon is necessary to increase the reversible capacity of the composite. When the mass ratio of silicon to graphite is 1:1 and the silicon particle size is 50 nm, the Si/C/graphite composite presents the first discharge specific capacity of about 1741.6 mAh/g and the first coulombic efficiency of 72.4%. The reversible specific capacity still remains 820 mAh/g after 60 cycles. It demonstrates that the carbon-coating structure can be obtained by pyrolyzing the organic matter which will improve the electrochemical performance of the silicon-based anodes effectively.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第11期1195-1199,共5页 Journal of Inorganic Materials
基金 国家自然科学基金重点项目(51072211)~~
关键词 SI C 石墨复合材料 负极材料 热解 锂离子电池 Si/C/graphite composite anode material pyrolysis lithium ion batteries
  • 相关文献

参考文献16

  • 1Ng See-How, Wang Jiazhao, Wexler David, et al. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. lnt. Ed., 2006, 45(41): 6896-6899.
  • 2Simon Gerard K, Goswami Tarun. Improving anodes for lithium ion batteries. Metallurgical and Materials Transactions A, 2001, 42A: 231-238.
  • 3Kim Hyunjung, Hart Byunghee, Choo Jaebum, et al. qhree-dimensional porous silicon particles for use in high-performance lithium secondary batteries.Angew. Chem. lnt. Ed, 2008, 47(52): 10151-10154.
  • 4Ryu J H, Kim J W, Sung Y E, et aL Failure modes of silicon pow- der negative electrode in lithium secondary batteries. Electrochem. Solid State Lett., 2004,7 (10):A306-A309.
  • 5Liu Y, Hanai K, Yang J, et al. Morphology-stable silicon-based composite for Li-intercalation. Solid State lonics, 2004,168: 61-68.
  • 6Xue J S, Myrtle K, Dahn J R. An epoxy-silicane approach to pre- pare anode matrials for rechargeable lithium ion batteries. : Electrochem. Soc, 1995, 142(9):2927-2935.
  • 7Xing W, Wilson A M, Eguchi K, et al. Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries. J. Electrochem. Soc., 1997, 144(7):2410-2416.
  • 8Yang J, Wang B F, Wang K, et al. Si/C composites for high capac- ity lithium storage materials. Electrochem. Solid State Lett., 2003, 6(8): A154-A156.
  • 9Yang Xuelin, Wen Zhaoyin, Xu Xiaoxiong, et al. High perform- ance silicon/carbon/graphite composites as anode materials for lithium ion batteries. J. Electrochem. Soc.,2006, 157(7): A1341-A1344.
  • 10Liu Y, Wen Z Y, Wang X Y, et aL Electrochemical behaviors of Si/C composite synthesized from F-containing precursors. J. Pow- er Sources, 2009, 189: 733-737.

同被引文献41

  • 1王忠,田文怀,刘小鹤,廖复辉,刘洋,李星国.硅镍纳米颗粒的氢电弧等离子体制备及电化学性能研究[J].无机化学学报,2006,22(4):661-665. 被引量:5
  • 2Wugner M R,RaimannP R,Trifonova A,et al. Dilato- metric and mass spectrometric: investigations on lithi- um ion battery anode material [J]. Analytical and Bio- nanlytical Chemistry, 2004,379 (2) : 272-- 276.
  • 3Larcher D, Mudalige C, George A, et al. Si-- containing disordered carbons prepared by prolysis of pitch/poly- siane blends: effect of oxygen and sulIer [J]. Solid State Ionics, 1999,122 (1/4) : 71 -- 82.
  • 4Guo Z P,Wang J Z,Liu H K,et al. Study of silicon polypyr- role composite as anode materials for Li--ion batteries [J]. J Power Sources,2005,146(1-2) :448--451.
  • 5Dimov N, Kugino S, Yoshio M. Mixed silicon - graphite composite as anode material for lithium ion butteries: influ- ence of preparation conditions on the properties of the materi al [J] . J Power Sources,2004,136(1) :108-114.
  • 6Thackeray M M,Wolverton C,Isaacs E D.Electrical energy storage for transportation-approaching the limits of,and going beyond,lithium-ion batteries[J].Energy Environmental Sci- ence,2012,5(7):7854-7863.
  • 7Zhao X X,Rui X H,Zhou W W,et al.Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage[J].Journal of Power Sources,2014,250:160-165.
  • 8Zhang M,Hou X H,Wang J,et al.Interweaved Si @ C/ CNTs&CNFs composites as anode materials for Li-ion batteries[J]..Journal of Alloys and Compounds,2014,588:206-211.
  • 9Ma X M,Liu M XfGan L H,et al.Novel mesoporous Si@C mi- crospheres as anodes for lithium-ion batteries[J].Physical Chemistry Chemical Physics,2014,16(9):4135-4142.
  • 10Song T,Hu L B,Paik U.One-dimensional silicon nanostruc- tures for Li-ion batteries[J].Journal of Physical Chemistry Let- ters,2014,5(4):720-731.

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部