期刊文献+

纳米Al_2O_3包覆LiFePO_4/C正极材料的结构和电化学性能(英文) 被引量:5

Structure and Electrochemical Performance of LiFePO_4/C Cathode Materials Coated with Nano Al_2O_3for Lithium-ion Battery
下载PDF
导出
摘要 主要研究了纳米氧化铝包覆对LiFePO4/C复合正极材料结构和电化学特性的影响。采用溶胶凝胶方法把纳米氧化铝包覆在商业LiFePO4/C颗粒表面。研究了Al2O3包覆层的量对LiFePO4电极在室温和高温充放电性能的影响。结果显示:2wt%Al2O3包覆层能有效增加电池的循环容量,能延缓电池在高温条件下充放电的容量衰减,减小电极的界面阻抗。这归因于氧化铝包覆层对磷酸铁锂晶粒的表面起保护作用,减少电解液对磷酸铁锂晶粒表面的腐蚀,从而改善循环过程中磷酸铁锂的表面结构的完整和稳定,确保锂离子扩散通道的畅通。 The structure and electrochemical performance of Al2O3-coated LiFePO4 cathode materials were investigated. A nano Al2O3 coating on the surface of commercial LiFePO4/C particles (Aleees Inc.) was prepared by using the Sol-Gel method. The effect of the amount of Al2O3 coating on the electrochemical performance and structural stability of LiFePO4 electrodes at room temperature (25℃) and elevated temperatures (55℃) was studied. The results show that 2wt% Al2O3 coating can effectively enhance the cycling capacity, alleviate capacity fading at high temperature and reduce cell impedance. It is largely attributed to Al2O3 coating, which plays a regulatory role of lithium-ion inserting the lattice and preventing direct contact between the cathode material and the electrolyte, and improves the structural stability of LiFePO4 during cycles.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第11期1265-1269,共5页 Journal of Inorganic Materials
基金 Shenzhen Science and Technology Plan Foundation(08LH-03)
关键词 锂离子电池 正极材料 磷酸铁锂 纳米氧化铝包覆 lithium-ion battery cathode materials LiFePO4 nano Al2O3 coating
  • 相关文献

参考文献27

  • 1Tollefson J. Charging up the future. Nature, 2008, 456: 436-440.
  • 2Wu X L, Jiang L Y, Cao F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: superior cathode material for electrochemical energy-storage devices. Adv. Mater., 2009, 21(25/26): 2710-2714.
  • 3Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997, 144(4): 1188-1194.
  • 4Pad_hi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc., 1997, 144(5): 1609-1613.
  • 5Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. ,I. Electrochem. Soc., 2001, 148(3): A224- A229.
  • 6Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. J. Power Sources, 2001, 97-98(1/2): 503- 507.
  • 7Huang H, Yin S C, Nazar L E Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid- State Lett., 2001, 4(10): A 170-A 172.
  • 8Chung Sung-Yoon, Bloking Jason T, Chiang Yet-Ming. ElectronicaUy conductive phospho- olivines as lithium storage electrodes. Nature Materials, 2002, 1: 123-128.
  • 9Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem. Commun., 2005, 7(7): 669-673.
  • 10Kim K, Jeong J H, Kim I J, et al. Carbon coatings with olive oil, soybean oil and butter on nano- LiFePO4. J. Power Sources, 2007, 167(2): 524-528.

同被引文献46

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部