期刊文献+

基于多尺度小波熵的阵发性房颤识别方法 被引量:3

Multi-scale Wavelet Entropy Based Method for Paroxysmal Atrial Fibrillation Recognition
下载PDF
导出
摘要 目的通过多尺度小波熵对阵发性房颤心率变异信号进行量化评估分析,提取特征参数,完成其与远离阵发性房颤信号的识别分类。方法获取心率变异信号和其对应的小波分解系数,筛选出在不同类别间存在显著差异的多尺度小波熵值,利用支持向量机完成识别分类。结果对MIT-BIT PAF Prediction Database 50例表面心电信号进行验证。本文方法与时域、频域以及非线性方法相比,正确率、特异性以及敏感性都显著提升。结论多尺度小波熵能够作为反映阵发性房颤发生过程中心脏内交感神经和迷走神经兴奋活动变化的动态指标,为航天医学人工智能心电监护以及房颤的临床治疗提供参考。 Objective To identify and distinguish the paroxysmal atrial fibrillation (PAF) ECG signal and the signal distant from PAF by using multi-scale wavelet entropy via extracting the characteristic parameters from heart rate variability signals. Methods HRV signals extracted from ECG signals were decomposed into a series of wavelet parameters, which were calculated to get multi-scale wavelet entropies. These entropies were further selected through statistical t-test method with significant difference. Recognition and prediction of PAF signals were achieved by SVM. Results Fifty signals from MIT-BIT PAF prediction database were chosen to verify the proposed algorithm. The correct rate, specificity and sensitivity were greatly improved as compared with the existed studies based on timedomain, frequency-domain or non-linear methods. Conclusion The multi-scale wavelet entropy was quite suitable to be a dynamic indicator for manifesting the active variation of sympathetic nerve and vagus nerve during atrial fibrillation, and it could become a meritorious diagnosable reference for aerospace medicine in terms of artificial intelligent monitoring and clinical treatments.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2013年第5期352-355,共4页 Space Medicine & Medical Engineering
基金 北京理工大学基础研究基金资助项目 北京高校青年英才计划 新世纪优秀人才计划(NCET080048)
关键词 阵发性房颤 心律变异性 多尺度小波熵 支持向量机 paroxysmal atrial fibrillation heart rate variability multi-scale wavelet entropy support vectorsmachine
  • 相关文献

参考文献10

  • 1Acharya UR, Joseph KP, Kannathal N,et al. Heart rate varia-bility :a review [ J]. Medical & Biological Engineering &Computing, 2006 , 44(12) :1031-1051.
  • 2Mohebbi M, Ghassemian H. Prediction of paroxysmal atrial fi-brillation based on non-linear analysis and spectrum and bis-pectrum features of the heart rate variability signal [ J]. Corn-put Methods Programs Biomed, 2012 , 105(1) : 40-49.
  • 3Shin DG, Yoo CS’Yi SH,et al. Prediction of paroxysmal at-rial fibrillation using nonlinear analysis of the R-R interval dy-namics before the spontaneous onset of atrial fibrillation [ J].Circulation Journal, 2006, 70(1) : 94-99.
  • 4Bilgin S,Olak OH,Koklukaya E, et al. Efficient solution forfrequency band decomposition problem using wavelet packet inHRV [ J]. Digital Signal Processing, 2008, 18 (6): 892-899.
  • 5Asl BM, Setarehdan SK, Mohebbi M. Support vector ma-chine-based arrhythmia classification using reduced features ofheart rate variability signal [ J]. Artif Intell Med,2008,44(1): 51-64.
  • 6Ler Y, Kuntalp M. Combining classical HRV indices withwavelet entropy measures improves to performance in diagno-sing congestive heart failure [ J]. Computers in Biology andMedicine, 2007,37(10) : 1502-1510.
  • 7Chesnokov YV. Complexity and spectral analysis of the heartrate variability dynamics for distant prediction of paroxysmalatrial fibrillation with artificial intelligence methods [ J]. Arti-ficial Intelligence In Medicine, 2008 , 43(2) : 151-165.
  • 8Chen SW. A wavelet-based heart rate variability analysis forthe study of nonsustained ventricular tachycardia [ J]. Bio-medical Engineering, IEEE Transactions on, 2002,49(7):736-742.
  • 9Laguna P, Moody GB, Mark RG. Power spectral density ofunevenly sampled data by least-square analysis : performanceand application to heart rate signals [ J]. IEEE Trans BiomedEng, 1998, 45(6) : 698-715.
  • 10Richman JS, Moorman JR. Physiological time-series analysisusing approximate entropy and sample entropy [ J]. Am JPhysiol Heart Circ Physiol, 2000,278(6) : H2039-H2049.

同被引文献26

  • 1冯应君,杨汉东,闵新文,李华义.自主神经功能异常与阵发性心房颤动的关系[J].陕西医学杂志,2006,35(8):937-938. 被引量:4
  • 2Bohnen M.,et al. . Quality of life with atrial fibrillation:do the spouses suffer as much as the patients. [ J]. PacingCl in Electrophysiol, 2011,34(7) :804-809.
  • 3Task Force of European Society of Cardiology,the North A-variability standards of measurement, physiological interpre-tation ,and clinical use [ J ] . European Heart Journal, 1996,17:354-381.
  • 4Couceiro R.,Carvalho P. . Detection of atrial fibrillation u-sing model - based ecg analysis [ C ]. 19th InternationalConference on Pattern Recognition, 2008,2225-2229.
  • 5Yoshua Bengio. A fast learning algorithm for deep beliefnets [ J]. Neural Computation,2006,18 (7 ) : 1527-1554.
  • 6HINTON G. A practical guide to training restricted boltz-mann machines[ D]. Toronto:University of Toronto,2010,1-20.
  • 7S. Babaeizadeh,R. E. Gregg,E. D. Helfenbein,J. M. Lindau-er,S. H. Zhou. Improvements in Atrial Fibrillation Detectionfor Real一Time Monitoring [ J] . Journal of Electrocardiolo-gy. 2009,42(6) :522-526.
  • 8S. Dash, K. H. Chon, S. Lu, E. A. Raeder. Automatic RealTime Detection of Atrial Fibrillation[ J]. Annals of Biomed-ical Engineering,2009,37(9) :1701-1709.
  • 9A. Ghodrati,B. Murray,S. Marinello. Rr Interval Analysis forDetection of Atrial Fibrillation in Ecg Monitors [ J ] . 200830th Annual International Conference of the Ieee Engineer-ing in Medicine and Biology Society,2008,(1-8) :601-604,5942.
  • 10N. Kikillus,G. Hammer, N. Lentz, E Stockwald, A. Bolz.Three Different Algorithms for Identifying Patients Sufferingfrom Atrial Fibrillation During Atrial Fibrillation Free Pha-ses of the Ecg[ J]. Computers in Cardiology 2007 ,(2) :801-804,824.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部