期刊文献+

基于Kinect的物体表面重建方法研究 被引量:3

Study on Kinect-based surface reconstruction
下载PDF
导出
摘要 随着测量技术的发展,基于深度图像的物体表面重建技术得到了越来越多的应用。本文实现了一种基于Kinect的物体表面重建方法。通过Kinect采集原始数据并经过感兴趣剔除、原始点云滤波、不同帧点云之间的配准、物体表面重建以及网格平滑等步骤,构造出了物体表面的模型。与传统的基于深度图像的重建方法相比,本文方法简便实用,能够获得较好的重建效果。 With the development of measurement technology, depth-image based surface reconstruction is becoming more and more popular. In this paper, we implement the task of Kinect-based surface reconstruction. By acquiring data from Kinect, filtering region of interest, filtering original point clouds, registering point clouds from different frames, reconstructing surface and smoothing the mesh, we get the surface model of object concerned. Compared with traditional depth-image based method, our method is more applicable and can get a good result.
出处 《中国体视学与图像分析》 2013年第3期255-262,共8页 Chinese Journal of Stereology and Image Analysis
基金 仿真预研项目
关键词 KINECT 表面重建 点云配准 网格平滑 Kinect surface reconstruction point clouds registration mesh smoothing
  • 相关文献

参考文献15

  • 1Klmshelham K, Elberink S O. Accuracy and resolution of Sensors, 2012, 12(2):1437-1454.
  • 2Peng B, Mao Y, Tang X F, et al. Comparison of sper- matogenic damage induced at 6 months after ligation of the vas deferens at proximal and distal locations in the rabbit[J]. Andrologia, 2011, 43(2): 129-138.
  • 3Besl P J, McKay H D. A Method forregistration of 3DObjects[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
  • 4Segal A, Haehnel D, Thrun S. Generalized-icp [ C ]// Proceedings of Robotics: Science and Systems (RSS). 2009 : 25 : 26 - 27.
  • 5Cart J C. Reconstruction and representation of 3D objects with radial basis functions [ C ]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. 2001:67 - 76.
  • 6Alex M. Computing andrendering point set surfaces[ J]. IEEE Transactions on Visualization and Computer Graph- ics, 2003,9(1) : 3 - 15.
  • 7Marton Z C. Onfast surface reconstruction methods for large and noisy point clouds[ J]. IEEE International Con- ference on Robotics and Automation, 2009, 3218 -3223.
  • 8Lowe David G. Distinctive image features from scale- invariant keypoints[ J]. International Journal of Computer Vision, 2004, 60(2): 91 -110.
  • 9Bay H, Ess A, Tuytelaars T,et al. Speeded up robustfeatures[ J ]. Computer Vision and Image Understand- ing, 2008, 110(3): 346-359.
  • 10Martin F, Robert B. Random sample consensus:a para- digm for model tting with applications to image analysis and automated cartography [ J ]. Communications of the ACM, 1981, 24(6): 381-395.

同被引文献20

  • 1Besl P J,McKay H D.A method for registration of 3-Dshapes[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,1992,14(2):239-256.
  • 2Sharp G C,Lee S W,Wehe D K.ICP registration usinginvariant features[J].IEEE Transactions on Pattern Analysisand Machine Intelligence,2002,24(1):90-102.
  • 3Basdogan C,Oztireli A C.A new feature based method forrobust efficient rigid-body registration of overlapping pointclouds[J].The Visual Computer,2008,24(7-9):679-688.
  • 4Dai J J,Yang J.A novel two-stage algorithm for accurateregistration of 3-D point clouds[C]//2011 International Conferenceon Multimedia Technology,2011:6187-6191.
  • 5Khoshelham K,Elberink S O.Accuracy and resolution ofkinect depth data for indoor mapping applications[J].Sensors,2012,12(2):1437-1454.
  • 6Steder B,Rusu R B,Konolige K,et al.Point feature extractionon 3D range scans taking into account object boundaries[C]//IEEE International Conference on Roboticsand Automation(ICRA),2011:2601-2608.
  • 7Rusu R B,Blodow N,Marton Z C,et al.Aligning pointcloud views using persistent feature histograms[C]//IEEEInternational Conference on Intelligent Robots and Systems,2008:3384-3391.
  • 8Rusu R B,Blodow N,Beetz M.Fast Point Feature Histograms(FPFH)for 3D registration[C]//IEEE InternationalConference on Robotics and Automation,2009:3212-3217.
  • 9Fischler M A,Bolles R C.Random sample consensus:aparadigm for model fitting with applications to imageanalysis and automated cartography[J].Communicationsof the ACM,1981,24(6):381-395.
  • 10Martinec D,Pajdla T.Robust rotation and translationestimation in multiview reconstruction[C]//Proc of 2007IEEE Computer Society Conference on Computer Visionand Pattern Recognition,2007:1-8.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部