期刊文献+

组蛋白去乙酰化酶抑制剂SAHA影响U251细胞中p21稳定性的机制

The Effect of HDACs Inhibitor SAHA on p21 Protein Stability in U251 Cells
原文传递
导出
摘要 目前已开发的组蛋白去乙酰化酶抑制剂如SAHA表现出了广泛的临床应用前景。然而,其作用机制有待进一步阐明。该研究旨在探明SAHA对p21蛋白稳定性的影响。运用Real-time PCR、免疫共沉淀、泛素化降解实验、免疫印迹和流式细胞技术分析了SAHA对p21 mRNA和蛋白水平、稳定性和泛素化水平的影响;并分析了SAHA通过调节GSK-3β的活性影响p21蛋白稳定性及细胞周期的进程。结果发现,SAHA不但可以上调p21 mRNA水平,还可以稳定其蛋白水平;而且SAHA通过影响GSK-3β的活性降低p21蛋白泛素化水平,从而抑制其降解,并因此改变细胞周期进程,这表明SAHA可以通过抑制GSK-3β的活性增加p21蛋白的稳定性,维持其蛋白水平从而发挥SAHA的生物学效应。该研究结果将为脑胶质瘤的临床研究提供实验依据。 Previous studies suggest that HDACs inhibitors including SAHA are proming drugs against tumors in clinical trails. However, the mechanism of SAHA against tumor cells still remains to be clarified. In this study, we investigated the effects of SAHA on the expression of p21 mRNA and protein in tumor cells using Real- time PCR and Western blot, and the stability and ubiquitination of p21 protein mediated by GSK-3β in U251MG cells through Western blot and Co-IP assay. Subsequently, cell cycle progress was determinded using FACS in U251MG cells treated with SAHA and transfected with vector, GSK-313KD or GSK-3βCA. We found that SAHA upregulated both p21 mRNA and protein levels, and decreased ubquitination levels of p21 protein and thus en- hanced its stability, and arrested cell cycle progress at GI phase. Our finding confirmed that SAHA enhanced the stability of p21 protein via inhibition of GSK-3β activity, and thus played roles in blocking cell cycle progress, which might provide the evidence for further clinical research against glioma cells.
出处 《中国细胞生物学学报》 CAS CSCD 北大核心 2013年第11期1577-1583,共7页 Chinese Journal of Cell Biology
基金 江苏省高校自然科学基金(批准号:N07KJB310018) 癌基因及相关基因国家重点实验室开放课题(批准号:90-13-05) 国家自然科学基金(批准号:31100964 81372718)资助的课题~~
关键词 SAHA 胶质瘤细胞 P21 GSK-3Β SAHA glioma cells p21 GSK-3β
  • 相关文献

参考文献18

  • 1Wang Y, Jiang T. Understanding high grade glioma: Molecular mechanism, therapy and comprehensive management. Cancer Lett 2013; 331(2): 139-46.
  • 2Hanahan D, Weinberg RA. Hallmarks of cancer: the next genera- tion. Cell 2011, 144(5/: 646-74.
  • 3Spiegel S, Milstien S, Grant S. Endogenous modulators and phar- macological inhibitors of histone deacetylases in cancer therapy. Oncogene 2012; 31(5): 537-51.
  • 4Marks PA, Xu WS. Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem 2009; 107(4): 600-8.
  • 5Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibi- tors: Molecular mechanisms of action. Oncogene 2007; 26(37): 5541-52.
  • 6Marks PA. Discovery and development of SAHA as an antican- cer agent. Oncogene 2007; 26(9): 1351-6.
  • 7Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAFI expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97( 18): 10014-9.
  • 8Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histonedeacetylase (HDAC) inhibitor activation of p21WAF 1 involves changes in promoter-associated proteins, including HDAC 1. Proc Natl Acad Sei USA 2004; 101 (5): 1241-6.
  • 9Yohn NL, Bingaman CN, DuMont AL, Yoo LI. Phosphati- dylinositol 3"-kinase, mTOR, and glycogen synthase kinase-313 mediated regulation of p21 in human urothelial carcinoma cells. BMC Uro12011; 11: 19.
  • 10Lee JY, Yu S J, Park YG, Kim J, Sohn J. Glycogen synthase ki- nase 3beta phosphorylates p21WAF1/CIP1 for proteasomal deg- radation after UV irradiation. Mol Cell Biol 2007; 27(8): 3187- 98.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部