期刊文献+

The role of nonlinearities associated with air-sea coupling processes in El Nino's peak-phase locking 被引量:2

The role of nonlinearities associated with air-sea coupling processes in El Nino's peak-phase locking
原文传递
导出
摘要 We use conditional nonlinear optimal perturbation (CNOP) to investigate the optimal precursory disturbances in the Zebiak- Cane El Nino-Southern Oscillation (ENSO) model. The conditions of the CNOP-type precursors are highly likely to evolve into El Nino events in the Zebiak-Cane model. By exploring the dynamic behaviors of these nonlinear El Nino events caused by the CNOP-type precursors, we find that they, as expected, tend to phase-lock to the annual cycles in the Zebiak-Cane model with the SSTA peak at the end of a calendar year. However, E1 Nino events with CNOPs as initial anomalies in the linearized Zebiak-Cane model are inclined to phase-lock earlier than nonlinear E1 Nino events despite the existence of annual cycles in the model. It is clear that nonlinearities play an important role in El Nino's phase-locking. In particular, nonlinear temperature advection increases anomalous zonal SST differences and anomalous westerlies, which weakens anomalous upwelling and acts on the increasing anomalous vertical temperature difference and, as a result, enhances E1 Nino and then delays the peak SSTA. Finally, we demonstrate that nonlinear temperature advection, together with the effect of the annual cycle, causes El Nino events to peak at the end of the calendar year. We use conditional nonlinear optimal perturbation(CNOP)to investigate the optimal precursory disturbances in the ZebiakCane El Nino-Southern Oscillation(ENSO)model.The conditions of the CNOP-type precursors are highly likely to evolve into El Nino events in the Zebiak-Cane model.By exploring the dynamic behaviors of these nonlinear El Nino events caused by the CNOP-type precursors,we find that they,as expected,tend to phase-lock to the annual cycles in the Zebiak-Cane model,with the SSTA peak at the end of a calendar year.However,El Nino events with CNOPs as initial anomalies in the linearized Zebiak-Cane model are inclined to phase-lock earlier than nonlinear El Nino events despite the existence of annual cycles in the model.It is clear that nonlinearities play an important role in El Nino’s phase-locking.In particular,nonlinear temperature advection increases anomalous zonal SST differences and anomalous westerlies,which weakens anomalous upwelling and acts on the increasing anomalous vertical temperature difference and,as a result,enhances El Nino and then delays the peak SSTA.Finally,we demonstrate that nonlinear temperature advection,together with the effect of the annual cycle,causes El Nino events to peak at the end of the calendar year.
出处 《Science China Earth Sciences》 SCIE EI CAS 2013年第11期1988-1996,共9页 中国科学(地球科学英文版)
基金 sponsored by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-QN203) the National Basic Research Program of China(Grant Nos.2010CB950400&2012CB955202) the National Natural Science Foundation of China(Grant No.41176013)
关键词 El Nino event NONLINEARITY optimal perturbation numerical model 厄尔尼诺事件 非线性作用 相位锁定 耦合过程 海温异常 周期模型 定相 海气
  • 相关文献

参考文献1

共引文献32

同被引文献89

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部