期刊文献+

模糊关联规则格的规则提取 被引量:5

Rules extraction of fuzzy association rules lattice
下载PDF
导出
摘要 针对模糊属性事务数据库提取模糊关联规则的问题,采用模糊概念格与模糊关联规则相结合的方法,实现格节点与属性项集的对应关系,提出模糊关联规则格理论,在渐进式建格算法基础上对格节点相应修改,给出了适用于动态数据库的模糊关联规则格的构建思想.利用模糊关联规则格挖掘关联规则,与采用Apriori算法计算频繁项目集获取规则相比较,容易获得用户感兴趣的关联规则,同时减少冗余规则的生成,使挖掘算法得到优化. In order to extract the fuzzy association rules from the fuzzy attribute transaction databases, using the method of combining fuzzy concept lattice and fuzzy association rules, this paper realized the corresponding relation between grid nodes and attribute itemsets, defined the concept of fuzzy association rules lattice, and gave its gradual building construction thought suitable for dynamic database through modifying the nodes. Compared with using Apriori algorithm, it is easy to obtain the association rules in which users are interested. At the same time it reduces redundant rules of the formation, and improves the efficiency of the mining.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2013年第6期852-856,共5页 Journal of Liaoning Technical University (Natural Science)
基金 河北省自然科学基金资助项目(A2011209046 A2012209030) 河北省教育厅高等学校指导性课题基金资助项目(Z2012046)
关键词 数据挖掘 关联规则 概念格 模糊关联规则 模糊概念格 模糊关联规则格 APRIORI算法 频繁项集 data mining association rule concept lattice fuzzy association rule fuzzy concept lattice fuzzyassociation rules lattice Apriori algorithm frequent itemset
  • 相关文献

参考文献7

二级参考文献28

共引文献119

同被引文献52

  • 1徐泉清,朱玉文,刘万春.基于概念格的关联规则算法[J].计算机应用,2005,25(8):1856-1857. 被引量:11
  • 2梁开健,梁泉,杨炳儒.关联规则挖掘中阈值协调器的设计与实现[J].系统工程与电子技术,2005,27(10):1800-1802. 被引量:3
  • 3张磊,沈夏炯,韩道军,安广伟.基于同义概念的概念格纵向合并算法[J].计算机工程与应用,2007,43(2):95-98. 被引量:5
  • 4杨海峰,张继福.粗糙概念格及构造算法[J].计算机工程与应用,2007,43(24):172-175. 被引量:16
  • 5Oyenesei A. Mining Weighted Association Rules for Fuzzy Quantitative Items[C]// Principles of Data Mining and Knowledge Discovery.Berlin Heidelberg: Springer,2000:416-423.
  • 6WANG Wei,YANG Jiong, YU P S.WAR:Weighted association rides for item intensities[J].Knowledge Information and Systems,2004,6(2):203-229.
  • 7VO B,TRAN N Y, NGO D H.Mining frequent weighted closed itemsets[J].Studies in Con~utafional Intelligence2013,29(5),379-390.
  • 8ZHAI Yue,WANG Lijuan,WANG Ning.Efficient weighted association rule mining using lattice[C]//Controi and Decision Conference (2014 CCDC),The 26th Chinese.Changsha:IEEE,2014:4 913-4 917.
  • 9FENG Tao,MURTAGH F, FARID M.Weighted association rule mining using weighted support and significance framework[C]//Proc.Of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,[S.1.]:ACM Press,2003:661-666.
  • 10ZAKI M J,GOUDA ICFast vertical mining using diffsets[C]//Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, In: Proe. ACM SIGKDD,2003:326-335.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部