摘要
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is one of the most significant targets for a large family of in- hibitors that may be used as herbicide, bactericide, fungicide, or photosensitizing activator to treat cancer through photodynamic therapy (PDT). Molecular docking and CoMFA were combined in a multistep framework with the ultimate goal of identifying important factor contributing to the activity of PPO inhibitors. As a continuation of the previous research work on the development of new PPO inhibitors, the bioassay results indicated that good PPO in- hibitors were discovered in all of the three chemical series with ICs0 values ranging from 0.010 to 0.061 pmol·L ^-1. Using the crystal structure of tobacco mitochondrial PPO (mtPPO) as template, all the compounds were docked into the enzyme active site. The docking pose of each compound was subsequently used in a receptor-based alignment, leading to the development of a significant CoMFA model with r^2 value of 0.98 and q^2 (cross validation r^2) value of 0.63. This novel multistep framework gives insight into the and it can be extended to other classes of PPO inhibitors. In be particularly applicable in virtual screening procedures. structural characteristics for the binding of inhibitors, addition, the simplicity of the proposed approach may
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is one of the most significant targets for a large family of in- hibitors that may be used as herbicide, bactericide, fungicide, or photosensitizing activator to treat cancer through photodynamic therapy (PDT). Molecular docking and CoMFA were combined in a multistep framework with the ultimate goal of identifying important factor contributing to the activity of PPO inhibitors. As a continuation of the previous research work on the development of new PPO inhibitors, the bioassay results indicated that good PPO in- hibitors were discovered in all of the three chemical series with ICs0 values ranging from 0.010 to 0.061 pmol·L ^-1. Using the crystal structure of tobacco mitochondrial PPO (mtPPO) as template, all the compounds were docked into the enzyme active site. The docking pose of each compound was subsequently used in a receptor-based alignment, leading to the development of a significant CoMFA model with r^2 value of 0.98 and q^2 (cross validation r^2) value of 0.63. This novel multistep framework gives insight into the and it can be extended to other classes of PPO inhibitors. In be particularly applicable in virtual screening procedures. structural characteristics for the binding of inhibitors, addition, the simplicity of the proposed approach may