期刊文献+

基于ISOMAP的高光谱遥感数据的降维与分类 被引量:12

Dimensionality reduction and classification for hyperspectral remote sensing data using ISOMAP
下载PDF
导出
摘要 为挖掘高光谱遥感数据内在的非线性结构特性,采用全局化流形学习算法等距特征映射(ISOMAP)对高光谱遥感数据进行非线性降维,并取得了优于常用的最小噪声分离(MNF)变换方法的结果,具有更好的数据压缩性能。将光谱角相似性度量方法用于ISOMAP算法,取得良好的降维效果。通过把ISOMAP降维算法和k-最邻近分类器相结合对降维后子空间特征进行分类,实验表明:ISOMAP利用较少的特征维数获得比MNF更高的分类精度,并达到较高稳定的分类精度,尤其对难以区分、光谱相似的两类别问题,ISOMAP的特征维数能够有效的提高两类别的可分性。 In order to address intrinsic nonlinearities of hyperspectral remote sensing data, isometric feature mapping (ISOMAP) is the most widely utilized global manifold learning approach for nonlinear dimensionality reduction. In this paper, it was employed to extract the inherent manifold of hyperspectral data and the experimental results show that ISOMAP provides a significantly more compact feature representation of hyperspectral data than the minimum noise fraction (MNF) transform. Considering the spectral information of hyperspectral data, spectral angle (SA) was applied to derive the neighborhood distances in ISOMAP algorithm, and the result was better. Extracted subspace features via ISOMAP algorithm were also implemented in conjunction with k Nearest Neighbor (kNN) classifier for classification. Experimental results show ISOMAP achieves higher classification accuracies than MNF transform, but with much smaller dimensionality. Especially, ISOMAP provides better discrimination for spectrally similar classes.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第10期2707-2711,共5页 Infrared and Laser Engineering
基金 国家863计划(2012AA12A304)
关键词 流形学习 等距特征映射 特征提取 高光谱遥感数据分类 manifold learning isometric feature mapping feature extraction hyperspectral remote sensing data classification
  • 相关文献

参考文献9

  • 1魏峰,何明一,梅少辉.空间一致性邻域保留嵌入的高光谱数据特征提取[J].红外与激光工程,2012,41(5):1249-1254. 被引量:16
  • 2Jimenez L 0, Rivera-median J L, Rodirguez-diaze, et al. Integration of spatial land spectral information homogenous by means of unsupervised extraction and classification for objects applied to multispectral and hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 844-851.
  • 3万俊,张晓晖,饶炯辉,梁瑞涛.基于独立成分分析的舰船气泡尾流后向散射光信号处理[J].红外与激光工程,2013,42(1):244-250. 被引量:10
  • 4Silva Y, Tenenbaum J B. Global versus local methods in nonlinear dimensionality reduction[J]. Advances in Neural Information Processing Systems, 2003, 15: 705-712.
  • 5Tenenbaum J B, de Silva Y, Langford J C. A global geometric frame work for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323.
  • 6Bachmann C M, Ainsworth T L, Fusina R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 441-454.
  • 7Han T, Goodenough D G. Investigation of nonlinearity in hyperspectral imagery using surrogate data methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2840-2847.
  • 8Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65-74.
  • 9Zhang Zhenyue, Zha Hongyuan. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[I]. SIAM Journal of Scientific Computing, 2004, 26 (1): 313-338.

二级参考文献24

  • 1苏丽萍,赵卫疆,任德明,曲彦臣,胡孝勇.气泡激光散射信号的频域处理方法[J].红外与激光工程,2008,37(S3):222-225. 被引量:1
  • 2张晓晖,雷选华,饶炯辉,刘启忠,葛卫龙,朱东华.舰船尾流激光制导方法的研究[J].激光技术,2005,29(5):494-496. 被引量:24
  • 3张建生,林书玉,苗润才,杨万民.小波分析在气泡幕散射光信号处理中的应用[J].光子学报,2007,36(3):557-564. 被引量:8
  • 4Rodarmel C, Shah J. Principal component analysis for hyperspectral image classification [J]. Surveying and Land Information Systems, 2002, 62(2): 115-122.
  • 5Etemad K, CheUappa R. Discriminant analysis for recognition of human face images [J]. Journal of Optical Society of America A, 1997, 14(8): 1724-1733.
  • 6Schoikopf B, Skola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 7Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C]//Proceedings of the 1999 IEEE Signal Processing Society Workshop, 1999: 41-48.
  • 8Bachmann C M, Ainsworth T L, Fusina R A. Exploiting manifold geometry in hyperspectral imagery [JJ. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (3): 441-454.
  • 9Kim D H, Finkel L H. Hyperspectral image processing using locally linear embedding [C]//Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering,2003: 316-319.
  • 10Tian Han, Goodenough D G. Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE) [C]//Proceedings of Geoscience and Remote Sensing Symposium, 2005: 1237-1240.

共引文献24

同被引文献126

引证文献12

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部