期刊文献+

基于sc-NMF的高光谱图像融合 被引量:3

Hyperspectral image fusion via sc-NMF
下载PDF
导出
摘要 将高光谱图像与全色图像融合,所得融合数据对于后续的其它高光谱图像处理非常有帮助。区别于传统方法,针对高光谱图像特点,引入了光谱约束项,改进并建立基于光谱约束的非负矩阵分解(spectral-constrained nonnegative matrix factorization,sc-NMF)。改进后,该模型首先在光谱约束前提下,对高光谱图像进行非负矩阵分解,对分解所得基底进行增强,再重建高光谱图像。这样,所得到的融合图像在空间细节和光谱保持性均有比较好的效果。最后,进行了仿真和实际数据的实验验证,通过主观和客观的评价结果,所改进的融合方法性能较好,比传统方法更适用于高光谱图像融合。 The fusion of hyperspectral image (HSI) and panchromatic image (PI) is a crucial and useful technique. The fused image possesses good spatial and spectral quality, and it is very helpful for the follow-up image processing. By using spectral constrained express, the traditional NMF (nonnegative matrix factorization) was improved, and used it in the hyperspectral image fusion. Firstly, the hyperspectral image was decomposed into basis and weight, then the details of hyperspectral image were sharpened by enhancing the details of the basis with high resolution image. Meanwhile, a spectral constraint function was added in the model to preserve the spectral information. Therefore, the fused image obtained by the proposed fusion model possesses good spatial and spectral information at the same time. At last, the experiments on simulated and real data were done with conventional and the proposed methods. The proposed method behaves better both in visual and objective indices, indicating it is a better choice for HSI fusion.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第10期2718-2723,共6页 Infrared and Laser Engineering
基金 国家自然科学基金(61273245 60975003 91120301) 国家重点基础研究发展计划(2010CB327904) 虚拟现实技术与系统国家重点实验室开放基金(BUAA-VR-12KF-07) 教育部新世纪优秀人才支持计划(NCET-11-0775) 北京市自然科学基金(4112036)
关键词 高光谱图像融合 非负矩阵分解 光谱保持 质量评价 hyperspectral image fusion nonnegative matrix factorization spectral preservation quality analysis
  • 相关文献

参考文献10

  • 1史振威,吴俊,杨硕,姜志国.RX及其变种在高光谱图像中的异常检测[J].红外与激光工程,2012,41(3):796-802. 被引量:20
  • 2Schowengerdt R A. Reconstruction of multi-spatial, multi- spectral image data using spatial frequency content Photogramm[J]. Eng Remote Sens, 1980, 46(10): 1325-1334.
  • 3Rahmani S, Strait M, Merkurjev D, et al. An adaptive IHS Pan-Sharpening method [J]. IEEE Trans Geosei Rein Sens, 2010, 7(4): 746-750.
  • 4Ranchin T, Wald L. Fusion of high spatial and spectral resolution images: The ARSIS concept and its implementation [J]. Photogramm Eng Remote Sens, 2000, 66(1): 49-61.
  • 5Shi Zhenwei, An Zhenyu, Jiang Zhiguo. Hyperspectral image fusion by the similarity measure-based variational method[J]. Opt F.ng, 2011, 50(7): 077006.
  • 6毛海岑,刘爱东.利用证据理论的图像融合方法[J].红外与激光工程,2013,42(6):1642-1646. 被引量:6
  • 7Khan M M, Chanussot J, Alparone L. Pansharpening of hypersepctral images using spatial distortion optimization[C]// Int Conf on Image Processing, 2009: 2853-2856.
  • 8苗启广,王宝树.基于非负矩阵分解的多聚焦图像融合研究[J].光学学报,2005,25(6):755-759. 被引量:25
  • 9Lee Daniel D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 789-795.
  • 10余先川,裴文静.针对不同融合算法的质量评价指标性能评估[J].红外与激光工程,2012,41(12):3416-3422. 被引量:19

二级参考文献22

  • 1胡良梅,高隽,安良,胡勇.基于D-S证据理论的模糊聚类图像融合分割[J].合肥工业大学学报(自然科学版),2004,27(7):721-724. 被引量:2
  • 2张萌,赵慧洁,李娜.高光谱数据光谱分辨率对矿物识别的影响分析[J].红外与激光工程,2006,35(z4):493-498. 被引量:7
  • 3Nasrabadi N M.Regularization for spectral matched filter andRX anomaly detector[C]//SPIE,2008,6966:1-12.
  • 4Goldberg H,Nasrabadi N M.A comparative study of linearand nonlinear anomaly detectors for hyperspectral imagery[C]//SPIE,2007,6565:1-17.
  • 5Zhenhua Li, Zhongliang Jing, Shaoyuan Sun. Pixel-clarity-based multifocus image fusion[J]. Chin. Opt. Lett., 2004,2(2): 82-85.
  • 6M. Novak, R. Mammone. Use of non-negative matrix factorization for language model adaptation in a lecture transcription task [C]. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Salt Lake, 2001. 541-544.
  • 7D. D. Lee, H. S. Seung. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 4111 (6755) :788-791.
  • 8Tao Feng, Stan Z. Li, Heung-Yeung Shum et al.. Local non-negative matrix factorization as a visual representation[C]. In:Proc. 2^nd International Conference on Development and Learning, Cambridge, 2002. 1-6.
  • 9D. Guillamet, M. Bressan, J. Vitria. A weighted non-negative matrix factorization for local representations [C]. In: Proc.IEEE Computer Society Conference on Computer Vision and Pattern Recognition Vl, Kauai, Hl, 2001. 942-947.
  • 10D. D. Lee, H. S. Seung. Algorithms for non-negative matrix factorization [C]. In: Advances in Neural Information Processing Systems 13, Denver, 2000. 556-562.

共引文献66

同被引文献41

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部