期刊文献+

采用多重约束的无人机导航KLT视觉跟踪算法 被引量:3

Algorithm of vision tracking for UAV navigation based on multi-constraint KLT
下载PDF
导出
摘要 特征点跟踪是实现无人机视觉里程计导航的重要技术。针对无人机视频图像帧间运动较大造成帧间的特征点跟踪误差大的问题,提出一种基于时间可逆性约束和双向偏移量约束相结合的多重约束KLT特征点跟踪策略,并在金字塔表示下分层求解跟踪点的偏移量。基于时间可逆性约束,建立新的融合前向跟踪和后向跟踪的目标函数,解算前向跟踪偏移量和后向跟踪偏移量,并构造新的帧间偏移量-双向偏移量,在金字塔分层表示结构下实现偏移量的最优估计。实验结果表明,该方法能够有效地实现帧间特征点的精确跟踪,与同类跟踪算法相比有较好的效果。 Feature point tracking is an important technology to implement the visual odometry for navigation. Aiming at the problem of feature tracking with big errors caused by large motion of the video fixed on UAV, a multi-constraint KLT tracking strategy based on time-reversibility and bi-directional displacement constraint was proposed and the pyramid model was used for the hierarchical displacement computation of the tracking points. The new objective function was set up according to the fusion of forward and backward tracking. A new bi-directional displacement was constructed based on the displacements of forward and backward tracking, and the optimal estimation of the displacements was implemented in the structure of pyramid model. The experiment results demonstrate that the proposed algorithm improves the performance of precise tracking effectively and outperforms the similar tracker.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第10期2828-2835,共8页 Infrared and Laser Engineering
基金 西安市科技计划项目(CXY1350(2)) 航空科学基金(20100853010)
关键词 特征点跟踪 时间可逆性 双向偏移量 feature point tracking time-reversibility bi-directional displacement
  • 相关文献

参考文献10

  • 1Davide Scararnuzza, Friedrich Fraundorfer. Visual odometry . part I: the first 30 years and fundamentals[J]. IEEE Robotics & Automation Magazine, 2011, 11, 18(4): 80-92.
  • 2Huang Kengyen, TSAI Yimin, TSAI Chihchung , et al. Feature -based video stabilization for vehicular applications[C]/IlEEE 14th International Symposium on Consumer Electronics, 2010: 1-2.
  • 3Lowe David G. Distinctive image features from scale?invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 4李熙莹,倪国强.红外图像的光流计算[J].红外与激光工程,2002,31(3):189-193. 被引量:20
  • 5Muhammad Wasim Nawaz, Abdesselam Bouzerdoum, Son Lam Phung. Optical flow estimation using sparse gradient representation[C]IIIEEE 18th International Conference on Image Processing, 2011: 2681-2684.
  • 6Gianpaolo Conte, Patrick Doherty. An integrated UAV navigation system based on aerial image matching[C]IIIEEE Conference on Aerospace Conference, 2008:1-10.
  • 7Birchfield S. KLT: An implementation of the kanade-Iucas?tomasi feature tracker[EB/OL]. http://www.ces.c1emson.edu/ stb/klt, 2005-11.
  • 8Hao Wu, Chellappa R, Sankaranarayanan A C, et al. Robust visual tracking using the time-reversibility constraint[C]//lEEE International Conference on Computer Vision, 2007.
  • 9Shi 1, Tomasi C. Good features to track[C]IIIEEE Conference on Computer Vision and Pattern Recognition, 1994: 593-600.
  • 10Zdenek Kalal, Krystian Mikolajczyk, 1iri Matas. Forward-backward error: automatic detection of tracking failures[C]/IInternational Conference on Pattern Recognition, 2010: 2756-2759.

二级参考文献2

共引文献19

同被引文献26

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部