期刊文献+

A Gorni-Zampieri Pair of a Homogeneous Polynomial Map

A Gorni-Zampieri Pair of a Homogeneous Polynomial Map
下载PDF
导出
摘要 In this paper, we improve the algorithm and rewrite the function make- Pairing for computing a Gorni-Zampieri pair of a homogeneous polynomial map. As an application, some counterexamples to PLDP (dependence problem for power lin- car maps) are obtained, including one in the lowest dimension (n = 48) in all suchcounterexamples one has found up to now. In this paper, we improve the algorithm and rewrite the function make- Pairing for computing a Gorni-Zampieri pair of a homogeneous polynomial map. As an application, some counterexamples to PLDP (dependence problem for power lin- car maps) are obtained, including one in the lowest dimension (n = 48) in all suchcounterexamples one has found up to now.
出处 《Communications in Mathematical Research》 CSCD 2013年第4期320-328,共9页 数学研究通讯(英文版)
基金 The"985 Project"and"211 Project"of Jilin University the Basis Scientific Research Fund(200903286)of Ministry of Education of China the NSF(11126044,11071097)of China Shandong Postdoctoral Science Foundation(201003054),Innovation Program
关键词 Gorni-Zampieri pair homogeneous dependence problem power linear map Gorni-Zampieri pair, homogeneous dependence problem, power linear map
  • 相关文献

参考文献11

  • 1Van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. Progr. Math. vol. 190. Basel-Boston-Berlin: Birkhauser, 2000.
  • 2Bass H, Connel E, Wright D. The Jacobian conjecture: reduction of degree and formal expan?sion of the inverse. Bull. Amer. Math. Soc., 1982, 7: 287-330.
  • 3Druzkowski L M. An effective approach to Keller's Jacobian conjecture. Math. Ann., 1983, 264: 303-313.
  • 4Gorni G, Zampieri G. On cubic-linear polynomial mappings. Indag. Math. (N.S.), 1997, 8: 471-492.
  • 5De Bondt M. Homogeneous Keller Maps. Ph.D. thesis. The Netherlands: Univ. of Nijmegen, 2009.
  • 6Van den Essen A. A counterexample to Meisters' cubic-linear linearization conjecture. Indag. Math. (N.S.), 1998,9: 333-339.
  • 7Meisters G. Polymorphisms conjugate to dilatations. In: Van den Essen A. Automorphisms of Affine Spaces. Dordrecht: Kluwer Academic Publishers, 1995.
  • 8Olech C. On the Markus-Yamabe stability conjecture. Proc. ofthe Intern. Meeting on Ordinary Differential Equations and Their Applications. Florence: Univ. of Florence, 1995: 127-137.
  • 9Liu D Y, Du X K, Sun X S. The linear dependence problem for power linear maps, Linear Algebra Appl., 2007, 426: 706-715.
  • 10De Bondt M. Quasi-translations and counterexamples to the homogeneous dependence prob?lem. Proc. Amer. Math. Soc., 2006, 134: 2849-2856.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部