期刊文献+

自适应遗传算法在数控伺服系统控制参数优化中的应用 被引量:2

Application of Control Parameters Optimization of CNC Servo System based on Self-Adaptive Genetic Algorithm
下载PDF
导出
摘要 PID参数整定是一个多参数组合优化的问题,针对目前常用的工程整定法无法在全局范围内对PID参数进行组合优化,只能从系统的单项性能指标出发进行整定,而标准的遗传算法又容易出现过早收敛等问题,为此,提出了基于改进的自适应遗传算法的PID参数整定方法。这种方法能够随适应度值自动改变交叉概率和变异概率,这种方法既能够确保算法的收敛,也能够很好的保证种群的多样性。将该方法应用于数控伺服系统,控制效果良好,最后将Ziegler-Nichols算法与自适应遗传算法整定的PID控制系统的动态响应性能作了对比分析,仿真试验结果证明了基于自适应遗传算法的PID参数整定方法的优越性。 The parameters adjustment of PID controller is a problem of optimization for multiple parameters. In order to solve the shortcomings of current engineering methods for parameters adjustment that can only deal with it according to the single requirement of system and can't optimize it in the whole range, as well as the standard genetic algorithm is prone to premature convergence and other problems, therefore, an improved adaptive genetic algorithm based on the PID parameter adjustment method was presented in this paper. This approach enables crossover probability and mutation probability automatically changes along with the fitness value, not only can it maintains the population diversity, but also can ensure the convergence of the algorithm. Using this method in CNC servo system and achieved good control effect, and compare the dynamic response of the PID control system based on Ziegler-Nichols algorithm and genetic algorithm. Simulation results show that the PID parameters adjustment method based on self-adaptive genetic algorithm has much superiority.
作者 刘春雅
出处 《装备制造技术》 2013年第10期231-234,共4页 Equipment Manufacturing Technology
关键词 自适应遗传算法 PID参数整定 数控伺服系统 仿真 self-adaptive genetic algorithm PID parameters adjustment CNC servo system simulation
  • 相关文献

参考文献8

  • 1王润孝,秦现生.机床数控原理与系统[M].西安:西北工业大学出版社,2009:1.
  • 2Zhang Jinhua,Zhuang Jian. Self-organizing genetic algorithm based tuning of PID controllers [J]. Information Sciences. 179 (2009) 1007-1018.
  • 3Yong P. Wang, Neville R. Watson Modified genetic algorithm approach to design of an optimal PID controller for AC-DC tran- smission systems [J]. International Journal of Electrical Power & Energy Systems,Volume 24,Issue 1,January 2002, Pages 59-69.
  • 4Ayla Altinten, Fazil Ketevanlioglu. Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm [J]. Chemical Engineering Journal, Volume 138, Issues 1-3, 1 May 2008, Pages 490-497.
  • 5刘楠楠,石玉,程卫平,秦福高.改进的多目标遗传算法及其在PID优化设计中的应用[J].应用科学学报,2010,28(1):83-89. 被引量:7
  • 6李凌宇,郭贵法,许锦标.基于模拟退火遗传算法的PID参数整定与优化[J].广东工业大学学报,2010,27(2):80-83. 被引量:9
  • 7罗小云,苏浩秦.基于遗传算法对PID控制飞行器射程优化[J].系统仿真学报,2009,21(14):4264-4267. 被引量:5
  • 8王小平,曹立明.遗传算法:理论、应用及软件实现[M].西安:西安交通大学出版社,2009.

二级参考文献26

  • 1张兴华,周刘喜.PID控制器的粒子群多目标优化设计[J].应用科学学报,2007,25(4):392-396. 被引量:7
  • 2SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms[C]//Proceedings of the 1st International Conference on Genetic Algorithms. Mahwah: Lawrence Erlbaum Associates Inc., 1985: 99-100.
  • 3HORN J, NAFPLIOTIS N, GOLDBERG D E. A niched Pareto genetic algorithm for multiobjective optimization[C]//Proceedings of the 1st IEEE Conference on Evolutionary Computation. Piscataway, N J: IEEE Service Center, 1994: 82-87.
  • 4DEB K, PRATAP A, AGARWAL S, MEYARIVAN T. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
  • 5ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization[C]//Eurogen 2001- Evolutionary Methods for Design, Optimisation and Control with Applications to Industrial Problems, Athens, Greece, 2001.
  • 6WANG Jiangjiang, JING Youyin, ZHANG Chunfa. Genetic optimization algorithm on PID decoupling controller for variable flow heating system[C]//Industrial Electronics and Applications, 2008(ICIEA 2008). Singapore: IEEE, 2008: 510-515.
  • 7YANG Qingjie, LI Guohou, KANG Xusheng. Application of fuzzy PID control in the heating system[C]//Chinese Control and Decision Conference, Yantai, Shandong, 2008: 2686-2690.
  • 8WANG Qiang, WANG Renbo, CHEN Jun. Design and application of PID controller based improved artificial immune algorithrn[C]//Systems and Control in Aerospace and Astronautics, Sbenzhen, 2008: 1-5.
  • 9ZIEGLER J G, NICHOLS N B. Optimum settings for automatic controllers[C]//Transactions ASME, 64, Conference on Chemical Process Control, Texas, 1942: 759-768.
  • 10YUWANA M, SEBORG D E. A newmethod for on-line controller tuning[J]. AIChE Journal, 1982, 28: 434.

共引文献16

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部