期刊文献+

杂波环境下发射-接收联合优化的自适应滤波方法 被引量:3

Adaptive Filter Based on the Cooptimized Transmit-receiver in Clutter
下载PDF
导出
摘要 为了提高杂波环境下起伏目标的幅度估计精度,该文提出一种基于最小均方误差准则的发射-接收联合优化自适应滤波方法。首先发射一组探测信号得到接收窗外散射中心的幅度估值,然后利用该信息自适应地优化相位调制信号以抑制接收窗外强散射中心的旁瓣干扰,最后根据各个散射中心的幅度统计信息对回波进行自适应滤波处理。该方法实现了接收机到发射机的闭环反馈,在多脉冲回波的处理上提高了估计精度并降低了运算复杂度。仿真结果证明了该方法的有效性。 To improve the amplitude estimation accuracy of the fluctuating targets in clutter, an adaptive filter based on the cooptimized transmit-receiver with minimum Mean Square Error (MSE) criteria is proposed. The approach is performed in three stages. Firstly, the radar transmits a burst of probing signals to estimate the amplitudes of the out-of-window scatterers, and then the phase-modulated waveform for the next transmission is optimized adaptively based on the estimated information for sidelobe suppression of the large out-of-window scatterers. Finally, adaptive filtering for the echo signals is realized based on the statistical amplitude estimation of the scatterers in each range bin. The proposed method realizes a close-loop feedback system from the receiver and the transmitter. Moreover, it has better estimation accuracy and lower computational complexity in the filtering for the multiple echo signals. The effectiveness of the proposed method is verified by numerical simulation.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第11期2657-2663,共7页 Journal of Electronics & Information Technology
基金 国家部委基金资助课题
关键词 认知雷达 自适应滤波 发射-接收联合优化 波形设计 Cognitive radar Adaptive filter Cooptimized transmit-receiver Waveform design
  • 相关文献

参考文献17

  • 1Haykin S. Cognitive radar: a way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 3040.
  • 2Guerci J R. Cognitive radar: a knowledge-aided fully adaptive approach[C]. IEEE Radar Conference, Washington DC, USA, 2010: 1365 1370.
  • 3Haykin S, Xue Yanbo, and Setoodeh P. Cognitive radar: step t.oward bridging the gap between neuroscience and engineering[J]. Proceedings of the IEEE, 2012, 100(11): 31023130.
  • 4Wicks M. Cognitive radar: a way forward[C]. IEEE Radar Conference, Kansas City, USA, 2011: 1217.
  • 5张明友,汪学刚.雷达系统[M].第3版,北京:电子工业出版社.2011:245248.
  • 6Yardibi T, Jian Li, Stoica P, et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425443.
  • 7Blunt S D and Gerlach K. Adaptive pulse compression via MMSE estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2): 572584.
  • 8张劲东,王海青,朱晓华,李彧晟.基于最大输出信噪比准则的自适应脉冲压缩[J].电子与信息学报,2009,31(4):790-793. 被引量:12
  • 9Hai Deng. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11): 31263135.
  • 10Xiangneng Zeng Yongshun Zhang Yiduo Guo.Polyphase coded signal design for MIMO radar using MO-MicPSO[J].Journal of Systems Engineering and Electronics,2011,22(3):381-386. 被引量:9

二级参考文献28

  • 1陶海红,廖桂生.X波段单发多收体制下用于解距离模糊的时变二相码波形优化设计[J].宇航学报,2005,26(5):657-662. 被引量:8
  • 2孙晓闻,吴顺君.多目标时彩色电视信号的距离旁瓣抑制[J].西安电子科技大学学报,2006,33(2):178-181. 被引量:2
  • 3王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计[J].空军雷达学院学报,2007,21(2):105-107. 被引量:7
  • 4Zrnic B and Zejak A. Range sidelobe suppression for pulse compression radars utilizing modified RLS algorithm. Proc. IEEE Spread Specturm Techniques and Applications, South Africa, 1998, 3: 1008-1011.
  • 5Sato R and Shinrhu M. Simple mismatched filter for binary pulse compression code with small PSL and small S/N loss. IEEE Trans. on Aerospace and Electronic Systems, 2003, 39(2): 711-718.
  • 6Hal D. Effective CLEAN algorithms for performanceenhanced detection of binary coding radar signals. IEEE Trans. on Signal Processing, 2004, 52(1): 72-78.
  • 7Bose R, Freedman A, and Steinberg B D. Sequence CLEAN: A modified deconvolution technique for microwave imaging of contiguous targets. IEEE Trans. on Aerospace and Electronic Systems, 2002, 38(1): 89-97.
  • 8Shackelford A K, Gram D J, Talapatra S, and Shannon D B. Adaptive pulse compression: Preliminary experimental measurements. IEEE radar conference, Massachusetts USA, 2007: 234-237.
  • 9Blunt S D and Gerlach K. Adaptive pulse compression via MMSE Estimation. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42(2): 572-584.
  • 10Shannon D B and Karl G. A generalized formulation for adaptive pulse compression of multi-static radar. IEEE Sensor array and multichannel signal processing, Massachusetts USA, 2006: 349-353.

共引文献28

同被引文献35

  • 1陶海红,廖桂生.X波段单发多收体制下用于解距离模糊的时变二相码波形优化设计[J].宇航学报,2005,26(5):657-662. 被引量:8
  • 2Richards M A.雷达信号处理基础[M].北京:电子工业出版社,2008:165-170.
  • 3Zhang Nan, Golomb S W. Polyphase Sequence with Low Autocorrelation [ J ]. IEEE Transaction on Information The- ory, 1993, 39(3): 1085-1089.
  • 4He Hao, Li Jian, Stoica P. Waveform Design for Active Sensing Systems : A Computational Approach [ M ]. Cam- bridge: Cambridge University Press, 2012.
  • 5Deng Hai. Polyphase Code Design for Orthogonal Netted Radar Systems [J]. IEEE Transaction on Signal Process- ing, 2004, 52(11):3126-3135.
  • 6Stoica P, He Hao, Li Jian. New Algorithms for Designing Unimodular Sequences with Good Correlation Properties [ J ]. IEEE Transaction on Signal Processing, 2009, 57 (4) :1415 - 1425.
  • 7Wu Hao, Song Zhiyong, Fan Hongqi, et al. Designing Se- quence with Low Sidelobe Levels at Specified Intervals Based on PSD Fitting [ J]. Electronics Letters, 2015, 51 ( 1 ) :99 - 101.
  • 8Liu Weixian, Lu Yilong, Lesturgie M. Optimal Sparse Waveform Design for HFSWR System [ C ]//International Waveform Diversity and Design Conference, 2007: 127- 130.
  • 9Wang Guohong, Lu Yilong. Sparse Frequency Transmit Waveform Design with Soft Power Constraint by Using PSO Algorithm [ C ]/! IEEE Radar Conference, 2008 : 1-4.
  • 10Wang Guohong, Lu Yilong. Sparse Frequency Waveform Design for MIMO Radar I J]. Progress in Electromagnet- ics Research B, 2010, 20( 1 ) : 19 - 32.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部