期刊文献+

S-修正的自适应卡尔曼滤波与模糊卡尔曼滤波相结合的汽车状态估计算法 被引量:5

Vehicle States Estimation Algorithm Based on Combination of S-correction Adaptive Kalman Filter and Fuzzy Kalman Filter
下载PDF
导出
摘要 精确的汽车状态信息的获取是汽车动态控制系统正常工作的前提。建立了二自由度汽车动力学模型,提出了将S-修正的自适应卡尔曼滤波与模糊卡尔曼滤波相结合进行汽车关键状态估计的方法。模糊卡尔曼滤波利用所设计的模糊控制器通过实时监测信息实际方差与理论方差的比值,实现对时变量测噪声的协方差矩阵的实时在线估计,提高了算法在时变量测噪声情况下的鲁棒性;S-修正的自适应卡尔曼滤波算法基于滤波不发散理论推导得出实时修正因子S,进而对估计误差协方差矩阵直接加权。两种方法的结合在总体上提高了在汽车动力学系统过程噪声与量测噪声协方差矩阵不准确情况下算法的鲁棒性与估计精度,最后通过基于ADAMS的虚拟试验验证了该方法的有效性。 Accurate acquisition of vehicle states information is the premise of vehicle dynamic control system's proper functioning.A 2-DOF vehicle model was established,and the combination algorithm of S-correction AKF and fuzzy Kalman filter was proposed to estimate vehicle key states,fuzzy Kalman filter achieves real-time estimation of the time variable measurement noise covariance matrix by using the fuzzy controller which designed by real-time monitoring the ratio of the actual variance and theoretical variance of the residuals,thus increasing the robustness of the algorithm when the measured noise changed over time.S-correction AKF algorithm was based on the non-divergence filter theory,and the real-time correction factor S was derived,then the estimation error covariance matrix was weighted directly.In general,the combination of two methods improves the robustness and estimation accuracy when process noise and measurement noise covariance matrix is inaccurate.Finally,the validity of the method was verified by ADAMS-based virtual test.
作者 黄超 林棻
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第20期2831-2835,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(10902049) 中国博士后科学基金资助项目(2012M521073)
关键词 汽车 状态估计 模糊卡尔曼滤波 自适应卡尔曼滤波 vehicle state estimation fuzzy Kalman filter adaptive Kalman filter(AKF)
  • 相关文献

参考文献9

二级参考文献47

  • 1施树明,Henk Lupker,Paul Bremmer,Joost Zuurbier.基于模糊逻辑的车辆侧偏角估计方法[J].汽车工程,2005,27(4):426-430. 被引量:29
  • 2刘钧圣,朱文彪.一种模糊自适应INS/GPS组合导航方法[J].现代防御技术,2005,33(5):25-29. 被引量:7
  • 3郭孔辉,吕济明,丁海涛,郭文鑫.基于MATLAB的车辆组件模型库的设计与实现[J].吉林大学学报(工学版),2006,36(6):866-870. 被引量:4
  • 4缑娜,王睿,郭相科,冯晓林.组合导航系统中模糊自适应卡尔曼滤波器的设计[J].空军工程大学学报(自然科学版),2007,8(2):36-39. 被引量:5
  • 5Venhovens P J, Naab K. Vehicle Dynamics Estimation Using Kalman Filters[J]. Vehicle System Dynamics, 1999, 32(2) : 171-184.
  • 6Satria M, Best M C. Comparison between Kalman Filter and Robust Filter for Vehicle Handling Dynamics State Estimation[J]. SAE Paper, 2002-01- 1185, 2002.
  • 7Wenzel T A, Burnham K J, Blundell M V, et al. Kalman Filter as a Virtual Sensor: Applied to Automotive Stability Systems [J]. Transactions of the Institute of Measurement and Control, 2007, 29 (2) :95-115.
  • 8Satria M, Best M C. State Estimation of Vehicle Handling Dynamics Using Non--linear Robust Extended Adaptive Kalman Filter[J]. Vehicle System Dynamics, 2004,41(S) : 103-112.
  • 9Lin Fen, Zhao Youqun. A Comparison of Two Soft --sensing. Methods for Estimating Vehicle Side Slip Angle[J]. SAE Paper,2007-01-3587, 2007.
  • 10Cherouat H, Braci M, Diop S. Vehicle Velocity, Side Slip Angles and Yaw Rate Estimation [C]// IEEE International Symposium on Industrial Electronics. Dubrovnik, 2005:349-354.

共引文献110

同被引文献43

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部