期刊文献+

表面修饰氧化石墨烯纳米带增强PMMA的研究 被引量:5

Reinforcement of poly( methyl methacrylate) with surface-modified graphene oxide nanoribbon
下载PDF
导出
摘要 以多壁碳纳米管(MWNTs)为原料,使用纵向氧化切割法制备了氧化石墨烯纳米带(GONR),通过物理吸附作用制备了聚醚型苯并咪唑(OPBI)非共价修饰GONR(FGONR)。采用溶液浇注法制得了聚丙烯酸甲酯(PMMA)/FGONR复合材料薄膜,对FGONR及其PMMA复合材料的结构与性能进行了研究,同时对比了以MWNTs,GONR,OPBI改性MWNTs(FCNTs)增强的PMMA复合材料的力学性能。结果表明:OPBI成功地物理吸附到GONR的表面,且FGONR在PMMA中具有良好的分散性能;在PMMA/FGONR复合材料中,当FGONR的质量分数为0.5%时,复合材料的拉伸强度达到49.50 MPa,杨氏模量达到2.27 GPa,其增强效果比MWNTs,GONR,FCNTs的要好,FGONR有望作为制备高性能复合材料的一种良好的纳米填料。 Graphene oxide nanoribbon (GONR) was successfully prepared by oxidative unzipping of multi-walled carbon nanotubes (MWNTs).And poly [2,2'-(p-oxydiphenylene)-5,5 '-bibenzimidazole] (OPBI) was successfully introduced onto GONR via physical absorption to obtain OPBI non-covalent modified GONR (FGONR).Poly(methyl methacrylate) (PMMA)/FGONR composite film was prepared by solution casting.The structure and properties of FGONR and PMMA/FGONR composites were studied and compared with those of MWNTs,GONR and OPBI-modified MWNTs (FCNTs) reinforced PMMA composites.The results showed that OPBI was successfully adsorbed on the surface of GONR,and FGONR was well dispersed in PMMA matrix.PMMA/FGONR composite had the tensile strength and Young's modulus of 49.50 MPa and 2.27 GPa,respectively,when the content of FGONR was 0.5% by mass fraction.FGONR was expected to be used as a satisfied nano-filler for producing high-performance composite due to its better reinforcement effect than MWNTs,GONR and FCNTs.
出处 《合成纤维工业》 CAS 北大核心 2013年第5期1-6,共6页 China Synthetic Fiber Industry
基金 国家自然科学基金资助项目(No50973062)
关键词 氧化石墨烯 聚甲基丙烯酸甲酯 表面修饰 复合材料 力学性能 分散性 graphene oxide poly(methyl methacrylate) surface modification composite mechanical properties dispersion
  • 相关文献

参考文献17

  • 1Tasis D,Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes[J]. Chem Rev, 2006, 106(3) :1105 - 1136.
  • 2Xie Long, Xu Feng, Qiu Feng, et al. Single-walled carbon nano- tubes funetionalized with high bonding density of polymer layers and enhanced mechanical pmporties of composites[ J]. Macro- molecules, 2007, 40(9) :3296 -3305.
  • 3Dyke C A, Tour J M. Covalent funetionalization of single-walled carbon nanotubes for materials applications [ J 1. J Phys Chem A, 2004, 108(51) :11151 -11159.
  • 4Coleman J N,Khan U,Gun'ko Y K. Mechanical reinforcement of polymers using carbon nanotubos[ J]. Adv Mater, 2006, 18 .(6) :689 -706.
  • 5Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudi- nal unzipping of carbon nanotubes to form graphene nanorib- bons[ J ]. Nature, 2009, 458:872 - 876.
  • 6Rafiee M A, Lu Wei, Thomas A V, et al. Graphene nanofibbon composites[ J]. ACS Nano, 2010, 4(12) :7415 -7420.
  • 7Led A, He Heyong, Forster M, et al. Structure of graphite oxide revisited [ J ]. Phys Chem B, 1998, 102 (23) :4477 - 4482.
  • 8Cai Dongyu, Song Mo. Recent advance in functionalized gra- phene/polymer nanocomposites[ J]. J Mater Chem, 2010, 20 (37) :7906 -7915.
  • 9Song Pingan, Cao Zhenhu, Cai Yuanzheng, et al. Fabrication of exfoliated graphene-based polyprepylene nanocomposites with enhanced mechanical and thermal properties [ J ]. Polymer, 2011,52(18) :4001 -4010.
  • 10O'Connor I, Hayden H, O'Connor S, et al. Polymer reinforce- ment with Kevlar-eoated carbon nanotubes [ J ]. J Phys Chem C, 2009, 113(47) :20184 -20192.

同被引文献50

  • 1郑玉婴.氧化石墨烯纳米带与氧化石墨烯增强热塑性聚氨酯薄膜的制备及性能[J].高分子材料科学与工程,2015,31(4):180-185. 被引量:11
  • 2李汉堂.环保型材料——热塑性聚氨酯[J].特种橡胶制品,2006,27(1):45-49. 被引量:12
  • 3蒲玉英,方建章,彭峰,李保健,黄垒.微乳法合成纳米SiO_2/TiO_2及其光催化性能[J].催化学报,2007,28(3):251-256. 被引量:28
  • 4江楠,宋晓岚,徐大余.纳米SiO_2复合材料研究进展[J].粉末冶金材料科学与工程,2007,12(5):272-276. 被引量:8
  • 5Vallittu PK. Comparison of the in vitro fatigue resistance of an acrylic resin removable partial denture reinforced with continuous glass fibers or metal wires [ J ]. J Prosthodont, 1996, 5 ( 2 ) : 115 -121.
  • 6Vallittu PK. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study [ J ]. Quintessence Int, 1997, 28(1 ) : 39 - 44.
  • 7Lim HP, Kim SS, Yang HS, et al. Shear bond strength and failure types of polymethyl methacrylate denture base resin and titanium treated with surface conditioner [ J ]. Int J Prosthodont, 2010, 23(3) : 246 -248.
  • 8Vallittu PK. Effect of some properties of metal strengtheners on the fracture resistance of acrylic denture base material [ J ]. J Oral Rehabil, 1993, 20(3) : 241 -248.
  • 9Nagai M. Bending strength of acrylic resin base reinforced with glass fiber [J]. Kokubyo Gakkai Zasshi, 1969, 36(4) : 361.
  • 10Uzun G, Hersek N, Tincer T. Effect of five woven fiber reinforce- ments on the i blPact and transverse strength of a denture base resin [J]. J Prosthet Dent, 1999, 81(5): 616-620.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部