期刊文献+

短型浮置板轨道减振系统振动响应分析——板下结构参数 被引量:4

Vibration Response Analysis of the Short Floating Slab Track System——Board Structure Parameters
下载PDF
导出
摘要 利用自行编制的有限元程序Vehicle-Structure Dynamic Analysis Program(VSDAP),从振动响应入手,同时结合短型浮置板的传递特性,研究短型浮置板轨道结构板下结构物理参数对于整个系统,包括车辆结构、轨道结构以及基础结构振动响应的影响.研究结果表明:当质量比例系数ξm、阻尼比例系数ξc和刚度比例系数ξk三者有2个取定的情况下,另外一个值可以通过分析给定一个建议区间;随着ξk增大,共振时传递率最大值降低,但截止频率升高;车体振动加速度最大值下降,浮置板自身振动幅度下降,但桥梁振动加剧;随着ξc的增大,共振时其传递率最大值下降速度由快至缓,当ξc达到某一值时,对隔振效果的影响已不是很明显. By using the self-programmed Vehicle-Structure Dynamic Analysis Program(VSDAP), starting from vibration response, and taking into consideration transfer characteristics of the short floating slab, the influence of physical parameters of the short floating slab board track structure on the whole system was studied, including the vibration of vehicle structure, track structure and basic structure. The results show that an additional value can he obtained by a given recommended interval as two set of mass ratio co efficient, damping ratio and stiffness ratio remain unchanged. With the increase of stiffness coefficient, the maxim_urn of resonance transfer rate decreases but the cutoff frequency increases; the maximum of vibra- tion acceleration of the vehicle decreases, while the vibration amplitude of the floating slab decreases, but the bridge vibration intensifies. As the damping ratio increases, the resonance and its maximum transfer rate dropping speed become slower. When the damping ratio reachesa certain value, the effect on vibration isolation almost disappears.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第10期1552-1556,共5页 Journal of Shanghai Jiaotong University
关键词 短型浮置板 轨道 车辆 振动 short floating slab track vehicle vibration
  • 相关文献

参考文献8

二级参考文献25

  • 1SAURENMAN H, PHILLIPS J. In-service tests of the effectiveness of vibration control measures on the BART rail transit system[J]. Journal of Sound and Vibration, 2006,293 : 888-900.
  • 2COXA S J, WANGA A C, MORISONA P, et al. A test rig to investigate slab track structures for controlling ground vibration[J]. Journal of Sound and Vibration, 2006,293 : 901-909.
  • 3RICHARD A. CARMAN, ETER SMOLUCHOWSKI P, ARVEY L. BERLINER H. Floating Slab Track Bed Design to Control Ground Borne Noise from Newark-Elizabeth Rail Light Rail Transit [A]. Transportation Research Circular E-C058: 9th National Light Rail Transit Conference[C], 2003, 12.
  • 4WAGNER H G. Attenuation of Transimission of Vibrations and Ground-Borne Noise by Means of Steel Spring Supported Low-Tuned Floating Trackbeds. www. gerb. de.
  • 5SHAMALTA M, MTRIKINE A V. Analytical study of the dynamic response of an embedded railway track to a moving load[J]. Archive of Applied Mechanics, 2003,73:131-146.
  • 6BITENBAUER J, DINKEL J. Dynamic interaction between a moving vehicle and an infinite structure excited by irregularities-Fourier transforms solution [J]. Archive of Applied Mechanics, 2002,72: 199- 211.
  • 7CUI F, CHEW C H. The effectiveness of floating slab track system part Ⅰ-receptance methods[J]. Applied Acoustics ,2000,61:441-453.
  • 8LOMBAERT G, DEGRANDE G, VANHAUWERE B, et al. The control of ground-borne vibrations from railway traffic by means of continuous floating slabs [J]. Journal of Sound and Vibration, 2006,297 : 946- 961.
  • 9HUSSEIN M F M, HUNIT H E M. Modelling of floating-slab tracks with continuous slabs under oscillating moving loads[J]. Journal of Sound and Vibration.
  • 10TIMOSHENKO S P. On the forced vibrations of bridges [J]. Philosophical Magazine, 1922, 643: 1018-1019.

共引文献33

同被引文献25

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部