期刊文献+

基于独立模型的非线性时间序列多步超前预测 被引量:4

Multistep-Ahead Independent Prediction of Nonlinear Time Series Based on Independent Model
下载PDF
导出
摘要 提出一种非线性时间序列的多步超前独立预测方法.对比逐步递归方法和独立预测方法,分析了积累误差对多步超前预测性能的影响.采用递归神经网络(RNN)实现了独立预测方法,建立了城市轨道交通能耗预测模型.通过MATLAB训练和测试该模型,比较了两种方法下的多步超前预测输出.结果表明,独立预测方法的误差优于逐步递归方法.最后指出了独立预测方法的优缺点及适用范围. A multistep-ahead independent prediction approach of nonlinear time series was proposed. The step-by-step recurrent approach and the independent approach were compared, and the influence of accu- mulative error on the performance of multistep-ahead prediction was analyzed. The recurrent neural network (RNN) was used to realize the independent prediction approach, and the predictive model of urban rail transit is built, trained and tested by MATLAB. The predictive results showed that the error of inde- pendent prediction was smaller than that of step-by-step recurrent approach. The advantages and disadvantages of each approach were analyzed.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2013年第10期1626-1631,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金(40872090)资助项目
关键词 非线性时间序列 多步超前独立预测 积累误差 递归神经网络 nonlinear time series multistep-ahead independent prediction accumulative error recurrentneural network
  • 相关文献

参考文献8

二级参考文献34

  • 1丁刚,钟诗胜.基于时变阈值过程神经网络的太阳黑子数预测[J].物理学报,2007,56(2):1224-1230. 被引量:16
  • 2BOX G E P, JENKINS G M, REINSEL G C. Time Series Analysis. Forecasting and Control [M]. 3rd edition. Beijing: Posts & Telecom Press, 2005:19 - 180.
  • 3CHEN S, BILLINGS S A. Representation of non-linear systems: the NARMAX model[J]. International Journal of Control, 1989, 49(3): 1013 - 1042.
  • 4HORNIK K, STINCHCOMBE M, WHITE H. Multi-layer feed-forward networks are universal approximators[J]. Neural Networks, 1989, 2(3): 359 - 366.
  • 5DE FREITAS N, ANDRIEU C, HOJEN-SORENSEN P, et al. Sequential Monte Carlo methods for neural networks[M]//Sequential Monte Carlo Methods in Practice. New York: Springer-Verlag, 2001.
  • 6XU X, LIB. Adaptive Rao-Blackwellised particle filter and its evaluation for tracking in surveillance[J]. IEEE Transactions on Image Processing, 2007, 16(3): 838 - 849.
  • 7HOLMES C, MALLICK B K. Bayesian radial basis function of variable dimension[J]. Neural Computation, 1998, 10(5): 1217 - 1233.
  • 8POGGIO T, GIROSI F. Networks for approximation and learning[J]. Proceedings of the IEEE, 1990, 78(9): 1481 - 1497.
  • 9RABINER L R. A tutorial on hidden Markov Models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257 - 286.
  • 10LIPORACE L A. Maximum likelihood estimation for multivariate observations of Markov sources[J]. IEEE Transactions on Information Theory, 1982, IT-28(5): 729 - 734.

共引文献50

同被引文献41

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部