期刊文献+

SPEA2算法的加工精度与能耗多工序车削优化 被引量:5

Multi-pass Turning Optimization of Machining Accuracy and Cutting Energy Using SPEA2
原文传递
导出
摘要 现代绿色制造中,切削参数优化对加工质量、生产效率、加工成本、产品利润、节能环保具有至关重要的意义。加工精度和能量消耗对于零件加工成本、加工质量和节能环保起决定性作用。在实际加工约束条件下,建立以加工精度和能量消耗为目标的多工序车削优化模型的切削参数优化选择十分必要。运用SPEA2算法和NSGA-II算法对多工序车削模型进行优化比较,优化实例表明SPEA2算法能够很好地克服NSGA-II算法在取值边界附近出现多个无法消除支配点的缺陷,获得了比NSGA-II算法更优的加工精度、能量消耗的Pareto最优解集以及相应的粗、精切削参数,为多工序车削切削参数优化提供了实践指导。 The optimization of cutting parameters plays a key role in machining quality,production efficiency,machining cost,product profit,energy saving and environment of modern green manufacturing.Machining accuracy and energy consumation have a large effect on machining cost and quality of work-piece.Considering various practical constraints,a multi-pass turning model for optimizing the cutting parameters,based on machining accuracy and cutting energy,is established.To Strength Pareto Evolutionary Algorithm-2 (SPEA2) and the Non-dominated Sorting Genetic Algorithm-Ⅱ(NSGA-Ⅱ) are applied to this model through an example.The SPEA2 algorithm overcomes the short coming that the NSGA-Ⅱ algorithm itself cant eliminate the dominated dots nearby the bounds.The example results of SPEA2 showed that it could obtain better machining accuracy,the Pareto-optimal solutions set of energy consumption and corresponding cutting parameters,than the example results of the NSGA-Ⅱ.Thus,SPEA2 can provide practical guides for optimization of machining parameters in multi-pass NC turning.
出处 《机械设计与研究》 CSCD 北大核心 2013年第5期67-70,80,共5页 Machine Design And Research
基金 武汉市资助市属高校科研项目(2010140)
关键词 加工精度 能量消耗 多工序车削 SPEA2算法 NSGA-Ⅱ算法 双目标优化 machining accuracy cutting energy multi-pass turning SPEA2 NSGA-Ⅱ bi-objective optimization
  • 相关文献

参考文献14

  • 1M C CHEN, D M TSAI. , A simulated annealing approach for opti- mization of multi-pass turning operations [ J ]. INT. J. PROD. RES, 1996,34(10) :2803 - 2825.
  • 2M C CHEN. Optimization machining economics models of turning operations using the scatter search approach [ J ]. International Journal of Production Research, 2004,42:2611 - 2625.
  • 3A R Yildiz. A new hybrid artificial bee colony-based approach for optimization of multi-pass turning operations[J] , Information Sci- ence, 2012,96(44) :1 -9.
  • 4陈青艳.非支配排序自适应遗传算法的车削优化[J].机械设计与研究,2013,29(2):69-73. 被引量:7
  • 5Rituparna Datta and Anima Majumder. Optimization of turning process parameters using multi-objective evolutionary algorithm [J]. IEEE, 2010.
  • 6S H Yang, U Natarjan. Multi-objective optimization of cutting pa- rameters in turning process using differential evolution and non- dominated sorting genetic algorithm-II approaches[J]. Int. J. Adv. Manuf. Technol, 2009, 49:773 - 784.
  • 7陈青艳,胡成龙,杜军.加工精度和金属切除率的精车切削优化[J].组合机床与自动化加工技术,2013(3):111-114. 被引量:16
  • 8陈青艳,廖传林,陈帆.单位生产成本与加工精度的多工序车削优化[J].组合机床与自动化加工技术,2013(6):17-22. 被引量:8
  • 9ZITZLER E. , LAUMANNS M. , THEILE L. , SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multi-Objective Op- timization [ R ]. Switzerland : Swiss Federal Institute of Technology, 2001.
  • 10ZITZLER E. , LAUMANNS M. , THEILE L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm forMuhi-Objective Opti- mization [ C ]//Proeeedings of Evolutionary MOhods for Design, Optimization and Control. Bareelona, Spain, 2002 : 19 - 26.

二级参考文献49

共引文献21

同被引文献55

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部