期刊文献+

基于数据挖掘的智能化OPAC系统设计 被引量:4

Intelligent OPAC System Design Based on Data Mining
原文传递
导出
摘要 针对传统OPAC系统缺乏智能应用的实际,在Microsoft SQL Server 2005 Data Mining和Vi sual Studio2005环境中,设计开发一个基于数据挖掘推荐引擎的智能化OPAC系统,系统能够在读者检索图书的同时,推荐与其密切相关的系列书目信息,深入引导读者借阅行为。同时,提出一种基于划分思想的改进型Apriori关联规则算法,通过系统开发证实了改进算法的有效性。 In view of the fact that traditional OPAC(Online Public Access Catalog) system lacks intelli- gence application, in Microsoft SQL Server 2005 Data Mining and Visual Studio2005 environment, the pa- per design and development a intelligent OPAC system based on data mining recommendation engine. The system can recommend series of bibliographic information associated with the retrieve results when readers submit a query, in-depth Guide to readers" borrowing behaviors. The paper focus on the Apriori association rules mining algorithm, presents an enhanced method based on Vertical Data Partitioning con- ditioning regimens, which can effectively reduce the number of data to improve the original Apriori algo- rithm performance. The result of experiments on historical Book-borrowing Records shows that the algo- rithm presented is efficient and robust.
作者 唐吉深
机构地区 河池学院图书馆
出处 《情报科学》 CSSCI 北大核心 2013年第11期91-94,共4页 Information Science
基金 河池学院青年科研基金项目(2011A-HO10)
关键词 OPAC 智能推荐 APRIORI OPAC intelligent recommendation Apriori
  • 相关文献

参考文献9

  • 1奉国和,吴敬学.Scriblio:基于Web2.0的图书馆新一代OPAC系统[J].高校图书馆工作,2010,30(6):50-54. 被引量:5
  • 2J.Han, Mieheline Kamber.Data Mining Concepts and Techniques[M].UK: Morgan Kaufmann Publishing, 2000:26,149-179.
  • 3李愚,刘轶,邵晶.基于WebPAC的图书馆联合书目检索系统[J].现代图书情报技术,2005(11):53-56. 被引量:2
  • 4徐嘉莉,陈佳.一种快速的个性化书目推荐方法[J].现代图书情报技术,2010(2):79-84. 被引量:13
  • 5R.Agrawal, T.Imielinski, and A.Swami. Mining associ- ation rules between sets of items in large databases [C]//Proc. of the ACM SIGMOD Conference on Manage- ment of Data, Washington,D.C.,1993:207-216.
  • 6R.AgrawalandR.Srikant,Fast algorithm for mining as- sociation rules[C]//Proc.of the 20th V LDB Conf.,1994: 478-499.
  • 7MacQueen J.Some methods for classification and anal- ysis of multivariate observations [C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statis- tics and Probability.Berkeley:University of California Press, 1967:281-297.
  • 8MUNDY,J.,Thornthwaite,W.数据仓库工具集一面向SQLServer2005和Microsoft商业智能工具集[M].闫雷鸣,译.北京:清华大学出版社.2007:65.
  • 9SQLServer2008数据挖掘的聚类分析算法[EB/0L]http://www.uml.org-n/sjjm/201010275.asp.2010-10-27.

二级参考文献25

共引文献17

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部