期刊文献+

细菌对抗菌肽的耐受机制 被引量:3

Mechanisms of antimicrobial peptide resistance
原文传递
导出
摘要 抗菌肽广谱、高特异、高生物活性等特点决定其具极大的临床应用潜力,然而抗菌肽的耐受是其药物开发必须重视和亟待克服的问题。从生物学的观点看,部分细菌可以产生抗菌肽,其必定存在逃避自身抗菌肽作用的机制;从进化的观点看,宿主和病原体之间是相互抑制、相互逃避、相互适应的关系,细菌在漫长的进化中会形成应对抗菌肽的特殊机制。抗菌肽对细菌存在多种作用机制,其核心是依赖于与细胞膜相互作用或进入细胞,进而改变膜完整性或干扰胞内生理生化反应导致细菌死亡;而细菌通过减弱抗菌肽结合、降低抗菌肽有效浓度等方式产生对抗菌肽的耐受。这些耐受机制也为抗菌肽类药物开发提供重要的启示。 Antimicrobial peptides (AMPs) are considered as potential anti-infective agents because of their broad- spectrum, highly effective and specific activities. Resistance to AMPs is an obstacle that must be paid more attention and overcome. From biological viewpoint, some bacteria can produce AMPs, so they should own certain strategy to tolerate their own AMPs. Moreover, in evolutionary perspective, host-pathogen interaction is the result of mutual struggle, evasion and adaptation over millions of years, so microbes might develop some strategies against AMPs. There are a variety of mechanisms that AMPs act on bacteria, among which the most important mechanisms are that the AMPs interact with cell membrane or enter into bacteria, resulting in the death of bacteria by altering the integrity of the membrane or disturbing intracellular physiological and biochemical reactions. On the contrary, bacteria can tolerate AMPs by weakening the binding of AMPs and decreasing the effective concentration of AMPs. These resistance mechanisms provide us inspiration for the drug development of AMPs.
出处 《生命科学》 CSCD 2013年第10期1008-1014,共7页 Chinese Bulletin of Life Sciences
基金 国家自然科学基金项目(31000960) 云南省应用基础研究项目(2010ZC054)
关键词 抗菌肽 耐受机制 协同进化 antimicrobial peptides resistance mechanisms host-pathogen co-evolution
  • 相关文献

参考文献49

  • 1Klevens RM, Morrison MA, Nadle J, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA, 2007, 298(15): 1763-71.
  • 2Zasloff M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870): 389-95.
  • 3Nes IF, Diep DB, Havarstein LS, et al. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek, 1996, 70(2-4): 113-28.
  • 4Eijsink VG, Skeie M, Midde1hoven PH, et al. Comparative studies of class IIa bacteriocins of lactic acid bacteria. App1 Environ Microbiol, 1998,64(9): 3275-81.
  • 5Bayer AS, Schneider T, Sahl HG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci, 2013, 1277: 139-58.
  • 6Kupferwasser LI, Skurray RA, Brown MH, et al. Plasmidmediated resistance to thrombin-induced platelet microbicidal protein in Staphylococci; role of the qacA locus. Antimicrob Agents Chemother, 1999, 43( I 0): 2395-9.
  • 7Breidenstein EB, de la Fuente-Nunez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol, 2011,19(8): 419-26.
  • 8Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 2006, 4(7): 529-36.
  • 9Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003, 55(1): 27-55.
  • 10Bell G, Gouyon PH. Arming the enemy: the evolution of resistance to self-proteins. Microbiology, 2003, 149(Pt 6): 1367-75.

同被引文献62

  • 1赵立岭,王吉华,窦相华,苏希玉.蛋白质折叠速度与其拓扑结构关系的研究[J].生物数学学报,2005,20(3):332-338. 被引量:1
  • 2Wang G. Database-guided discovery of potent peptides to combat HIV-1 or superbugs[J]. Pharmaceuticals (Basel), 2013, 6(6): 728-758.
  • 3Noore J, Noore A, Li B. Cationic antimicrobial peptide LL-37 is effective against both extra-and intracellular Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2013, 57(3): 1283-1290.
  • 4Vandamme D, Landuyt B, Luyten W, et al. A comprehensive summary of LL-37, the factotum human cathelicidin peptide[J]. Cell Immunol, 2012, 280(1): 22-35.
  • 5Tripathi S, Tecle T, Verma A, et al. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins[J]. J Gen Rrol, 2013, 94(Pt 1): 40-49.
  • 6Singh D, Qi R, Jordan J L, et al. The human antimicrobial peptide LL-37, but not the mouse ortholog, mCRAMP, can stimulate signaling by poly(I: C) through a FPRLl-dependent pathway[J]. JBiol Chem, 2013, 288(12): 8258-8268.
  • 7Salvado M D, Di Gennaro A, Lindbom L, et al. Cathelicidin LL-37 induces angiogenesis via PGE2-EP3 signaling in endothelial cells, in vivo inhibition by Aspirin[J]. Arterioscler Thromb Vasc Biol, 2013, 33(8): 1965-1972.
  • 8Rivas-Santiago B, Rivas Santiago C E, Castaneda-Delgado J E, et al. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis[J], lnt J Antimicrob Agents,2013, 41(2): 143-148.
  • 9Rico-Mata R, De Leon-Rodriguez L M, Avila E E. Effect of antimicrobial peptides derived from human cathelicidin LL- 37 on Entamoeba histolytica trophozoites[J]. Exp Parasitol, 2013, 133(3): 300-306.
  • 10Pinheiro da Silva F, Medeiros M C, Santos A B, et al. Neutrophils LL-37 migrate to the nucleus during overwhelming infection[J]. Tissue Cell, 2013, 45(5): 318-320.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部