期刊文献+

基于相遇节点跨层感知的机会网络高效低时延路由算法 被引量:4

Efficient low-delay routing algorithm for opportunistic networks based on cross-layer sensing of encountered nodes
下载PDF
导出
摘要 针对基于epidemic机制的机会网络路由算法未能及时感知相遇节点以及在数据分组交换过程中存在冗余的问题,提出了一种采用跨层感知相遇节点思路的机会网络高效低时延路由算法——ERCES(epidemic routing based on cross-layer encountered-node sensing),通过在物理层、MAC层和网络层之间的跨层信息共享与协同,实现相遇节点及时感知,并且采用节点相遇后立即广播新数据分组、收到SV(summary vector)分组后优先发送目的节点为对方的数据分组、动态自适应发送HELLO分组、借助SV删除节点缓存中已到达目的节点的分组等新机制,减少控制和存储开销,降低分组时延。理论分析验证了ERCES算法的有效性,仿真结果表明:与经典的Epidemic Routing算法及其多个改进相比,ERCES算法的控制开销和存储开销分别减少8.2%和2.1%以上,数据分组平均端到端时延至少降低了11.3%。 An efficient low-delay routing algorithin, name epidemic routing based on cross-layer encountered-node sens- ing (ERCES) was proposed to address the issue that the epidemic-based routing algorithms have some extralatency in sensing encountered nodes and extra overhead in exchanging data packets. ERCES achieves to speed sensing encountered nodes through cross-layer design among the PHY, MAC, and network layers. Moreover, to reduce overhead and to de- crease data latency, it makes a node send novel data packet immediately after encountering other nodes, sends the packets close-by their destinations firstly after receiving summary vector(SV) packets, adaptively varies the period of HELLO packets, and deletes the packets reaching their destinations from nodes' memory with the help of SVs. Theoretical analysis verifies the effectiveness of ERCES. And simulation results show that ERCES reduces by at least 11.3% the con- trol overhead by at least 8.2%, 2.1% memory overhead by more than 2.1%, and the average end-to-end delay by at least 11.3%.
出处 《通信学报》 EI CSCD 北大核心 2013年第10期1-8,共8页 Journal on Communications
基金 国家自然科学基金资助项目(60972068) 重庆市自然科学基金资助项目(cstc2012jjA40051) 重庆市科委重点实验室专项基金资助项目(D2011-24) 应急通信重庆市重点实验室开放课题基金资助项目(201201)~~
关键词 机会网络 路由算法 相遇节点 感知 跨层设计 opportunistic network routing algorithm encountered node sensing cross-layer design
  • 相关文献

参考文献18

  • 1STAVROULAKI V, TSAGKARIS K, LOGOTHETIS M, et al. Op- portunistic networks[J]. IEEE Vehicular Technology Magazine, 2011, 6(3):52-59.
  • 2熊永平,孙利民,牛建伟,刘燕.机会网络[J].软件学报,2009,20(1):124-137. 被引量:324
  • 3叶晖,陈志刚,赵明.ON-CRP:机会网络缓存替换策略研究[J].通信学报,2010,31(5):98-107. 被引量:16
  • 4LIU Q S, ZHOU J E, ZHANG P N. Adaptive cache management method for opportunistic network based on number of message cop- ies[J]. Journal of Chongqing University of Posts and Telecommunica- tions (Natural Science Edition. 2012. 23(4:394-390.
  • 5BURGESS J, GALLAGHER B, JENSEN D, et al. Maxprop: routing for vehicle-based disruption-tolerant networks[A]. The 25th IEEE In- ternational Conference on Computer Communications[C]. Washington DC, USA, 2006. 1-11.
  • 6BURNS B, BROCK O, LEVINE B N. Mv routing and capacity build- ing in disruption tolerant networks[A]. The 24th Annual Joint Confer- ence of Conference of the IEEE Computer and Communications So- cieties[C]. Miami, USA, 2005. 398-408.
  • 7JATHAR R, GUPTA A. Probabilistic routing using contact sequencing in delay tolerant networks[A]. 2010 the Second International Confer- ence on Communication Systems and Networks[C]. Bangalore, India, 2010.1-10.
  • 8KO H, OH S, KIM C. Adaptive, asynchronous rendezvous protocol for opportunistic networks[J]. Journal of Electronic Letters, 2012, 48(8): 462-464.
  • 9VAHDAT A, BECKER D. Epidemic Routing for Partially Connected Ad Hoc Networks[R]. 2000.
  • 10MATSUADA T, TAKINE T. (p, q)-Epidemic routing for sparsely populated mobile ad hoc networks[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(5):783-793.

二级参考文献105

  • 1Hull B, Bychkovsky V, Zhang Y, Chen K, Goraczko M, Miu A, Shih E, Balakrishnan H, Madden S. CarTel: A distributed mobile sensor computing system. In: Proc. of the 4th Int'l Conf. on Embedded Networked Sensor Systems. Boulder: ACM, 2006. 125-138.
  • 2Pan H, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C. Pocket switched networks and human mobility in conference environments. In: Proc. of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking. Philadelphia: ACM. 2005. 244-251.
  • 3Juang P, Oki H, Wang Y, Martonosi M, Peh LS, Rubenstein D. Energy-Efficient computing for wildlife tracking: Design tradeoffs and early experiences with ZebraNet. In: Proc. of the 10th Int'l Conf. on Architectural Support for Programming Languages and Operating Systems. New York: ACM, 2002.96-107. DO1=http://doi.acm.org/10.1145/605397.605408
  • 4Pelusi L, Passarella A, Conti M. Opportunistic networking: data forwarding in disconnected mobile ad hoc networks. Communications Magazine, 2006,44(11): 134-141.
  • 5Conti M, Giordano S. Multihop ad hoe networking: The reality. Communications Magazine, 2007,45(4):88-95.
  • 6Fall K. A delay-tolerant network architecture for challenged Internets. In: Proc. of the 2003 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications. Karlsruhe: ACM, 2003.27-34.
  • 7Akyildiz IF, Akan B, Chert C, Fang J, Su W. InterPlaNetary Intemet: State-of-the-Art and research challenges. Computer Networks, 2003,43(2):75-112.
  • 8Gupta P, Kumar P. The capacity of wireless networks. IEEE Trans. on Information Theory, 2000,46(2):388-404.
  • 9Grossglauser M, Tse DNC. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. on Networking, 2002, 10(4):477-486.
  • 10Small T, Haas ZJ. The shared wireless infostation model: A new ad hoc networking paradigm (or where there is a whale, there is a way). In: Proc. of the 4th ACM Int'l Symp. on Mobile Ad Hoc Networking. Annapolis: ACM, 2003. 233-244.

共引文献476

同被引文献26

  • 1ZHAO W, AMMAR M, ZEGURA E. A message fer- rying approach for data delivery in sparse mobile ad hoc networks [C] /// Proceedings of the 5th ACM Inter- national Symposium on Mobile Ad Hoc networking and Computing. New York, USA: ACM, 2004: 187-198.
  • 2HE T, SAMI A, LEE K W. Dispatch-and-search: dy- namic multi-ferry control in partitioned mobile net- works [C] // Proceedings of the Twelfth ACM Interna- tional Symposium on Mobile Ad Hoe Networking and Computing. New York, USA: ACM, 2011. 17-26.
  • 3SUGANTHE R C, BALASUBRAMANIE P. Impro- ving QoS in diseonnected mobile ad hoc network [J]. Journal of Mobile Communication, 2008, 2(4): 105- 111.
  • 4ZHAO W, AMMAR M, ZEGURA E. Controlling the mobility of multiple data transport ferries in a delay- tolerant network[C]///Proceedings of 24th Annual Joint Conference of the IEEE Computer and Communi- cations Societies. Piscataway, NJ, USA: IEEE, 2005 : 1407-1418.
  • 5LAI Y L, JIANG J R. A genetic algorithm for data mule path planning in wireless sensor networks[J]. Applied Mathematics &Information Sciences, 2013, 7 (1) : 413-419.
  • 6SUGANTHE R C, BALASUBRAMANIE P. Impro- ving QoS in delay tolerant mobile ad hoc network using multiple message ferries [J]. Network Protocols and Algorithms, 2011, 3(4): 32-53.
  • 7KER,NEN A, KARKK)i, INEN T, OTT J. Simula- ting mobility and DTNs with the ONE [J]. Journal of Communications, 2010, 5(2): 92-105.
  • 8POONGUZHARSELVI B,VETRISELVI V.Survey on routing algorithms in opportunistic networks[C]∥Proceedings of International Conference on Computer Communication and Informatics.Piscataway,NJ,USA:IEEE,2013:1-5.
  • 9CAO Y,SUN Z,WANG N,et al.Converge-anddiverge:a geographic routing for delay/disruptiontolerant networks using a delegation replication approach[J].IEEE Transactions on Vehicular Technology,2013,62(5):2339-2343.
  • 10NIU J,GUO J,CAI Q,et al.Predict and spread:an efficient routing algorithm for opportunistic networking[C]∥Proceedings of 2011IEEE Wireless Communications and Networking Conference.Piscataway,NJ,USA:IEEE,2011:498-503.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部