期刊文献+

基于主动学习和SVM方法的网络协议识别技术 被引量:13

Network protocol identification based on active learning and SVM algorithm
下载PDF
导出
摘要 针对未知网络协议数据流的获取与标记工作主要依赖于领域专家。然而,样本数据量的增加会导致人工成本超过实际负荷。提出了一种新颖的未知网络协议识别方法。该方法基于主动学习算法,仅依靠原始网络数据流的载荷部分实现对未知网络协议的有效识别。实验结果表明,采用该方法设计的识别系统在保证识别准确率和召回率的前提下,能够有效地降低学习过程中标记的样本数目,更适用于实际的网络应用环境。 Obtaining qualified training data for protocol identification generally requires domain experts to be involved, which is timeconsuming and laborious. A novel approach for network protocol identification based on active learning and SVM algorithm was proposed. The experimental evaluations on realworld network traces show this approach can accurately and efficiently classify the target network protocol from mixed Intemet traffic, and meanwhile display a sig nificant reduction in the number of labeled samples. Therefore, this approach can be employed as an auxiliary tool for analyzing unknown protocols in realworld environment.
出处 《通信学报》 EI CSCD 北大核心 2013年第10期135-142,共8页 Journal on Communications
基金 国家高技术研究发展计划("863"计划)基金资助项目(2012AA012803 2013AA014703) 国家科技支撑计划基金资助项目(2012BAH46B02) 国家自然科学基金资助项目(61303261 61303170)~~
关键词 网络安全 网络协议识别 主动学习 网络数据流 支持向量机 network security protocol identification active learning network traces support vector machine
  • 相关文献

参考文献21

  • 1Intemet netflow statistics[EB/OL], http://netflow.intemet2.edu, 2010.
  • 2TCP and UDP port numbers[EB/OL], http://www.iana.org/assignments/ port-numbers, 2008.
  • 3ROUGHAN M, SEN S, SPATSCHECK O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP tratTtc classification[A]. Proceedings of the 4th ACM SIGCOMM Conference on Interact Measurement[C]. Taormina, Sicily, Italy, 2004.135-148.
  • 4ZHANG J, CHEN C, XIANG Y. An effective network traffic classifi- cation method with unknown flow detection[J]. IEEE Transactions on Network and Service Management, 2013, 10(1):1-15.
  • 5KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC: multilevel traffic classification in the dark[J]. SIGCOMM Computer Communication Review, 2005, 35(4):229-240.
  • 6CABALLERO J, YIN H, LIANG Z, et al. Polyglot: automatic extrac- tion of protocol message format using dynamic binary analysis[A]. Proceedings of the 14th ACM Conference on Computer and Commu- nications Security[C]. Virginia, USA, 2007.317-329.
  • 7L1N Z, JIANG X, XU D, et al. Automatic protocol format reverse engineering through context-aware monitored execution[A]. Proceed- ings of the 15th Network and Distributed System Security Sympo- sium[C]. California, USA, 2008.1-17.
  • 8WONDRACEK G, MILANI P, KRUEGEL C, et al. Automatic net- work protocol analysis[A]. Proceedings of the 16th Network and Dis- tributed System Security Symposium[C]. California, USA, 2008.1-18.
  • 9CUI W, PEINADO M, CHEN K, et al. Tupni: automatic reverse engi- neering of input formats[A]. Proceedings of the 15th ACM Conferenceon Computer and Communications Security[C]. Virginia, USA, 2008. 391-402.
  • 10HAFFNER P, SEN S, SPATSCHECK O, et al. ACAS: automated construction of application signatures[A]. Proceedings of the 2005 ACM SIGCOMM Workshop on Mining Network Data[C]. Pennsyl- vania, USA, 2005.197-202.

同被引文献163

引证文献13

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部