摘要
针对未知网络协议数据流的获取与标记工作主要依赖于领域专家。然而,样本数据量的增加会导致人工成本超过实际负荷。提出了一种新颖的未知网络协议识别方法。该方法基于主动学习算法,仅依靠原始网络数据流的载荷部分实现对未知网络协议的有效识别。实验结果表明,采用该方法设计的识别系统在保证识别准确率和召回率的前提下,能够有效地降低学习过程中标记的样本数目,更适用于实际的网络应用环境。
Obtaining qualified training data for protocol identification generally requires domain experts to be involved, which is timeconsuming and laborious. A novel approach for network protocol identification based on active learning and SVM algorithm was proposed. The experimental evaluations on realworld network traces show this approach can accurately and efficiently classify the target network protocol from mixed Intemet traffic, and meanwhile display a sig nificant reduction in the number of labeled samples. Therefore, this approach can be employed as an auxiliary tool for analyzing unknown protocols in realworld environment.
出处
《通信学报》
EI
CSCD
北大核心
2013年第10期135-142,共8页
Journal on Communications
基金
国家高技术研究发展计划("863"计划)基金资助项目(2012AA012803
2013AA014703)
国家科技支撑计划基金资助项目(2012BAH46B02)
国家自然科学基金资助项目(61303261
61303170)~~
关键词
网络安全
网络协议识别
主动学习
网络数据流
支持向量机
network security
protocol identification
active learning
network traces
support vector machine