期刊文献+

引力搜索算法在青霉素发酵模型参数估计中的应用 被引量:6

Applications of gravitational search algorithm in parameters estimation of penicillin fermentation process model
下载PDF
导出
摘要 针对生物发酵过程难以精确估计模型参数的问题,提出一种利用引力搜索算法(GSA)对青霉素发酵非构造式动力学模型参数进行估计的方法。在分析发酵过程反应机理的基础上,选取合适的青霉素发酵非构造式动力学模型的状态方程式;然后利用GSA良好的全局搜索能力,对状态方程式的参数进行估计,从而得到精确的发酵模型。仿真结果表明:GSA实现了对青霉素发酵过程模型参数的准确估计,所得到的模型精度能够满足青霉素发酵过程的状态估计和控制需求。因此,GSA可有效地应用于模型参数估计。 Concerning the identification of the accurate model parameters of biological fermentation process, a parameters estimation method for non-structural dynamical model of penicillin fermentation using the Gravitational Search Algorithm (GSA) was proposed. Based on the rule of fermentation mechanism, the appropriate state equations of non-structural dynamical model were chosen; and through virtue of the global searching ability of GSA, the parameters of state equation were estimated and the accurate fermentation model was obtained. The simulation results show that GSA accurately estimated model parameters in penicillin fermentation process, the accuracy of the obtained model can meet the requirements of state estimation and condition control in penicillin fermentation process. Therefore, GSA can be applied to model parameters estimation effectively.
出处 《计算机应用》 CSCD 北大核心 2013年第11期3296-3299,3304,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61273131) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 参数估计 引力搜索算法 青霉素发酵 非构造式动力学模型 全局最优 parameter estimation Gravitational Search Algorithm (GSA) penicillin fermentation non-structuraldynamical model global optimization
  • 相关文献

参考文献10

  • 1王景杨,苑明哲,曹景兴,潘杰.基于最小二乘参数辨识的非线性机理模型研究[J].沈阳理工大学学报,2008,27(3):48-51. 被引量:2
  • 2薛尧予,王建林,于涛,赵利强.基于改进PSO算法的发酵过程模型参数估计[J].仪器仪表学报,2010,31(1):178-182. 被引量:13
  • 3NIU B, LI L. A novel PSO-DE-based hybrid algorithm for global op- timization [ C]// Proceedings of the 4th International Conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence. Berlin: Spring- er-Verlag, 2008:156 - 163.
  • 4王东阳,王健,陈宁.基于遗传算法的谷氨酸发酵动力学参数估计[J].生物技术通讯,2005,16(4):407-408. 被引量:7
  • 5RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. GSA: a gravitational search algorithm [ J]. Information Sciences, 2009, 179 (13) : 2232 -2248.
  • 6ABBAS B, NEZAMABADI-POUR H, BAHROLOLOUM H, et al. A prototype classifier based on gravitational search algorithm [ J]. Applied Soft Computing, 2012, 12(2) : 819 -825.
  • 7BHA'Iq'ACHARYA A, ROY P K. Solution of multi-objective opti- mal power flow using gravitational search algorithm [ J]. IET Gener- ation Transmission & Distribution, 2012, 6(8): 751 -763.
  • 8徐遥,王士同.引力搜索算法的改进[J].计算机工程与应用,2011,47(35):188-192. 被引量:43
  • 9RASHEDI E, NEZAMABADI-POUR H, SARYAZDI S. BGSA: bi- nary gravitational search algorithm [ J]. Natural Computing, 2010, 9(3) : 727 -745.
  • 10BIROL G, ONDEY C, CINAR A. A modular simulation package for fed-batch fermentation: penicillin production [ J]. Computers and Chemical Engineering, 2002, 26(11) : 1553 - 1565.

二级参考文献31

  • 1刘长良,刘广生.火电厂轴流风机实时仿真模型的建立和应用[J].华北电力学院学报,1993(1):98-102. 被引量:3
  • 2李凯.风机高压变频调速改造及节能原理[J].变频器世界,2005(8):65-68. 被引量:3
  • 3王朝晖,耿光辉,宋生奎.阀门与节能[J].阀门,2007(1):33-35. 被引量:3
  • 4LIM M C, TAYEB Y J, MODAK J M, et al. Computational algorithms for optimal feed rates for a class of fed-batch fermentation: Numerical results for penicillin and cell mass production [J]. Biotechnol. Bioeng, 1986, (28): 1408-1420.
  • 5RANGANATH M, RANGANATH S, GOKULNATH C. Identification of bioprocesses using genetic algorithm [J]. Bioprocess. Eng, 1999, (21): 123-127.
  • 6LEE J H, LIM H C, YOO Y J, et al. Optimization of feed rate profile for the monoclonal antibody production [J]. Bioprocess. Eng, 1999, (20): 137-146.
  • 7EBERHART R C, KENNEDY J A. New optimizer using particle swarm theory [A]. Proceedings of the 6th International Symposium on Micro Machine and Human Science [C]. 1995:39-43.
  • 8KAWOHL M, HEINE T, KING R. Model based estimation and optimal control of fed-batch fermentation processes for the production of antibiotics [J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(11): 1223-1241.
  • 9SHINZAWA H, JIANG J H, IWAHASHI M, et al. Self-modeling curve resolution (SMCR) by particle swarm optimization (PSO) [J]. Analytica Chimica Acta, 2007, 595: 275-281.
  • 10Karakuzu J, Eberhart R C.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks, 1995,4:1942-1948.

共引文献61

同被引文献55

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部