期刊文献+

基于超球体多类支持向量数据描述的医学图像分类新方法 被引量:4

New medical image classification approach based on hypersphere multi-class support vector data description
下载PDF
导出
摘要 针对乳腺x光医学图像多分类问题中训练速度比较慢的问题,提出超球体多分类支持向量数据描述(HSMC—SVDD)分类算法,即把超球体单分类支持向量数据描述直接扩展到超球体多分类支持向量数据描述。通过对乳腺x光图像提取灰度共生矩阵特征;然后用核主成分分析(KPCA)对数据进行降维;最后用超球体多分类支持向量数据描述分类器进行分类。由于每一类样本只参与构造一个超球体的训练,因此训练速度明显提高。实验结果表明,这种超球体多分类支持向量数据描述分类器的平均训练时间为21.369S,训练时间比Wei等(WEILY,YANGYY.NISHIKAWARM.el al.Astudyonseveralmachine.1earningmethodsforclassificationofmalignantandbenignclusteredmicro—calcifications.IEEETransactionsonMedicalImaging,2005,24(3):371—380)提出的组合分类器(平均训练时间40.2S)减少了10~20S,分类精度最高达76.6929%,适合解决类别数较多的分类问题。 Concerning the low training speed of mammography multi-classification, the Hypersphere Multi-Class Support Vector Data Description (HSMC-SVDD) algorithm was proposed. The Hypersphere One-Class SVDD (HSOC-SVDD) was extended to a HSMC-SVDD as a kind of immediate multi-classification. Through extracting gray-level co-occurrence matrix features of mammography, then Kernel Principle Component Analysis (KPCA) was used to reduce dimension, finally HSMC- SVDD was used for classification. As each category trained only one HSOC-SVDD, its training speed was higher than that of the present multi-class classifiers. The experimental results show that compared with the combined classifier, in which the average train time is 40.2 seconds, proposed by Wei (WEI L Y, ~ANG Y ~, NISHIKAWA R M, et al. A study on several machine-learning methods for classification of malignant and benign clustered micro-calcifications. IEEE Transactions on Medical Imaging, 2005, 24(3) : 371 -380), the training time of HSMC-SVDD classifier is 21. 369 seconds, the accuracy is up to 76. 692 9% and it is suitable for solving classification problems of many categories.
出处 《计算机应用》 CSCD 北大核心 2013年第11期3300-3304,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61163036 61263036) 甘肃省自然科学基金资助项目(1010RJZA022 1107RJZA112) 2012年度甘肃省高校基本科研业务费专项 甘肃省高校研究生导师项目(1201-16) 西北师范大学第三期知识与创新工程科研骨干项目(nwnu-kjcxgc-03-67)
关键词 乳腺X光图像 多类支持向量数据描述 灰度共生矩阵 核主成分分析 mammograph multi-class Support Vector Data Description (SVDD) Gray-Level Co-occurrence Matrix(GLCM) Kernel Principle Component Analysis (KPCA)
  • 相关文献

参考文献13

  • 1NISHIKAWA R M. Current status and future directions of computer- aided diagnosis in mammography [ J]. Computerized Medical Ima- ging and Graphics, 2007, 31(4/5): 224-235.
  • 2张超,蒋宏传.舒怡乳腺诊断仪在乳腺癌诊断中的应用[J].中华肿瘤防治杂志,2010,17(19):1600-1600. 被引量:8
  • 3WANG L P. Support vector machine: theory and application [ M]. Berlin: Springer-Verlag, 2005:1-66.
  • 4TAX D M J, DUIN R P W. Support vector data description [ J]. Machine Learning, 2004, 54(1): 45-66.
  • 5徐图,罗瑜,何大可.超球体单类支持向量机的SMO训练算法[J].计算机科学,2008,35(6):178-180. 被引量:10
  • 6LE T, TRAN D, MA W, et al. A theoretical framework for multi- sphere support vector data description [ C] // Proceedings of the 17th International Conference on Neural Information Processing: Models and Applications. Berlin: Springer, 2010: 132-142.
  • 7LAUER F, GUERMEUR Y. MSVMpack: a multi-class support vec- tor machine package [ J]. Journal of Machine Learning Research 2011, 12:2293-2296.
  • 8WEI L Y, YANG Y Y, NISHIKAWA R M, et al. A study on sever- al machine-learning methods for classification of malignant and be- nign clustered microcalcifications [ J]. IEEE Transactions on Medi- cal Imain. 2005. 24(3): 371-380.
  • 9OLIVER A, FREIXENET J, ZWIGGELAAR R, Automatic classifi- cation of breast density [ C]/! Proceedings of the 2005 IEEE Inter- national Conference on Image Processing. Washington, DC: IEEE Computer Society, 2005:2258 - 1261.
  • 10SWINIARSKI R, LIM H K. Independent component analysis, prin- cipal component analysis and rough sets in hybrid mammogram clas- sification [ C]/! Proceedings of the 2006 International Conference on Image Processing. Washington, DC: IEEE Computer Society, 2006:1121 - 1126.

二级参考文献6

  • 1孙强.乳腺癌的早期诊断[J].实用医学杂志,2007,23(1):1-3. 被引量:77
  • 2Scholkopf B, Burges C, Vapnik V. Extracting support data for a given task[C]//Fayyad U M, Uthurusamy R, eds. Proceedings, First International Conference on Knowledge Discovery & Data Mining. Menlo Park, CA:AAAI Press, 1995
  • 3Tax D M J, Duin R P W. Data domain description by support vectors[C]//Verleysen M, ed. Proceedings ESANN, Brussels, 1999:251 - 256
  • 4Scholkopf B, Platt J, Shawe-Taylor J A S, et al. Estimating the support of a highdimenslonal distribution[J]. Neural Computation, 1990,13 : 7
  • 5Platt J. Fast training of support vector machines using sequential minimal optimization [M]//Scholkopf B, Burges C, Smola A,eds. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press,1999:185-208
  • 6http://www. its. uci. edu/-mlearn/MLRepository. html

共引文献16

同被引文献44

  • 1Vapnik V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2009.
  • 2CASTLEMANKR.数字图像处理[M].北京:电子工业出版社,2002..
  • 3NelloCristianini JohnShawe-Taylor 李国正 王猛 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 4Nanni L,Lumini A,Brahnam S.Local binary patterns variants as texture de-scriptors for medical image analysis[J].Artificial Intelligence in Medicine,2010,9:117-125.
  • 5McInerney T,Terzopoulos D.Deformable models in medical image analysis:Medical Image Analysis,1996[M].England:Oxfo-rd University Press,1996:91-108.
  • 6Marrocco C,Molinara M,D'Elia C,et al.A computer-aided detection system for clustered microcalcifications[J].Artificial Intelligence in Medicine,2010,0:23-32.
  • 7Jiang J,Trundle P,Ren J.Medical image analysis with artificial neural networks[J].Computerized Medical Imaging and Graphi-cs,2010,34:617-631.
  • 8Quellec G.Medical Case Retrieval From a Committee of Decision Trees[J].IEEE Transaction on Information Technology in Biomedicine,2010,14(5):1227-1235.
  • 9Swiniarski R,Lim H K.Independent component analysis,principal component analysis and rough sets in hybrid mammogram classification[C]∥Proceedings of the 2006 International Conference on Image Processing,2006.Washington,DC:IEEE Computer Society,2006:1121-1126.
  • 10Larochelle H, Bengio Y.Classification using Discriminative Restricted Boltzmann Machines[C]∥Proceedings of the 25th International Conference on Machine Learning,2008.Helsinki,Finland,2008:1-8.

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部