期刊文献+

实验基于资源预先分类的云计算任务调度算法 被引量:6

Task Scheduling Algorithm Based on Improved Particle Swarm Optimization Algorithm in Cloud Computing Environment
下载PDF
导出
摘要 研究云计算中如何合理分配计算资源及有效调度任务运行的问题,针对云计算中现有的任务调度算法只追求任务最短完成时间,而没有从云计算中资源负载均衡的角度考虑,容易导致云计算中一些资源负载过大而另一些资源闲置的现象,为改善最短完成时间而不能很好兼顾负载均衡的问题,提出了一种利用资源预先分类的具有双适应度的粒子群优化调度算法,将云计算资源属性考虑在内,作为另一适应度函数对任务进行调度。通过改进算法调度产生的结果不仅能使任务完成所需时间较短,而且系统资源利用率较高,兼顾了执行时间最小和负载均衡。仿真结果表明,在相同的条件下,改进算法优于传统的粒子群优化算法,为云计算有效地优化调度提供了依据。 Research the problem of that rational allocation of computing resources and effective scheduling of tasks in the cloud. Existing task scheduling algorithms for cloud computing do not take into account the load balan- cing problem for the pursuit of the shortest completion time. To solve this problem, a double - fitness particle swarm optimization(DFPSO) based on resource pre -classification was proposed in this paper. In the new algorithm, the properties of the cloud computing resources were considered, which is regarded as another fitness function of task scheduling. The results generated by this algorithm not only make the task completion time shorter, but also have a higher utilization of system resources, which takes into account the minimum execution time and load balancing. The simulation shows that DFPSO is an efficient task scheduling algorithm in the cloud computing by contrast with the conventional particle swarm optimization(PSO).
出处 《计算机仿真》 CSCD 北大核心 2013年第10期363-367,410,共6页 Computer Simulation
基金 中国移动新疆分公司研究发展基金项目(xjm2011-1)
关键词 云计算 任务调度 负载均衡 预先分类 双适应粒子群 时间 Cloud computing Task scheduling Load balancing Pre - classification DFPSO Time
  • 相关文献

参考文献13

  • 1Foster I, et al. Cloud Computing and Grid Computing 360 - degree Compared[ C]. Proceedings of the 2008 Grid Computing Environ- ments Work shop. Washington DC : IEEE Computer Society, 2008.
  • 2Daniel Nurmi, Rich Wolski, Chris Grzegorczyk. The Eucalyptus Open Source Cloud - computing System [ C ]. Proceeding of the Cluster Computing and the Grid. California: University of Califor- nia, 2009.
  • 3Chien A, et al. Entropia: Architecture and Performance of An En- terprise Desktop Grid System[J]. Journal of Parallel and Distribu- ted Computing, 2003,63 (5) :597 - 610.
  • 4B Rochwerger, et al. The Reservoir Model and Architec - ture for Open Federated Cloud Computing [ J ]. IBM Journal of Research and Development, 2009,53 (4) : 1 - 17.
  • 5李建锋,彭舰.云计算环境下基于改进遗传算法的任务调度算法[J].计算机应用,2011,31(1):184-186. 被引量:203
  • 6R Buyya. Economic - based Distributed Resource Management and Scheduling for Grid Computing[ D]. Melbourne: Monash Universi- ty, 2002.
  • 7孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 8左利云,左利锋.云计算中基于预先分类的调度优化算法[J].计算机工程与设计,2012,33(4):1357-1361. 被引量:35
  • 9D Bratton, J Kennedy. Defining a Slandard for Particle Swarm Op- timization[ C ]. Proceedings of the IEEE Swarm Intellige -nce Symposium. Honolulu : HI, 2007.
  • 10S Ali, et al. Representing Task and Machine Heterogeneities for Heterogeneous Computing systems [ J ]. Journal of Science and Engineering, 2000,3 ( 3 ) : 195 - 207.

二级参考文献44

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2潘峰,陈杰,甘明刚,蔡涛,涂序彦.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377. 被引量:67
  • 3倪庆剑,邢汉承,张志政,王蓁蓁,文巨峰.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357. 被引量:67
  • 4米勒.云计算[M].史美林,姜进磊,孙瑞志,等译.北京:机械工业出版社,2009:125-128.
  • 5FOSTER I, YONG ZHAO, RAICU I, et al. Cloud computing and grid computing 360-degree compared[C] // Proceedings of the 2008 Grid Computing Environments Workshop. Washington, DC: IEEE Computer Society, 2008:1 - 10.
  • 6ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: A Berkeley view of cloud eomputing[EB/OL]. [2010 -01 -25]. http://www, eecs. berkeley, edu/Pubs/TechRpts/20Og/EECS-20og- 28. pdf.
  • 7BARROSO L A, DEAN J, HOLZLE U. Web search for a planet: the google cluster architecture[J]. IEEE Micro, 2003, 23(2) : 22 - 28.
  • 8CHIEN A, CALDER B, ELBERT S, et al. Entropia: Architecture and performance of an enterprise desktop grid system[J]. Journal of Parallel and Distributed Computing, 2003, 63(5):597-610.
  • 9KIM J S, NAM B, MARSH M, et al. Creating a robust desktop grid using peer-to-peer services[EB/OL]. [ 2009 - 10 - 16]. ftp://ftp. cs. umd. edu/pub/hpsl/papers/papers-pdf/ngs07.pdf.
  • 10ABRAHAM A, BUYYA R, NATH B. Nature's heuristics for scheduling jobs on computational grids[ C]// The 8th International Conference on Advanced Computing and Communications. New Delhi: Tata McGraw-Hill Publishing, 2000:45-52.

共引文献311

同被引文献41

  • 1孟凡超,张海洲,初佃辉.基于蚁群优化算法的云计算资源负载均衡研究[J].华中科技大学学报(自然科学版),2013,41(S2):57-62. 被引量:13
  • 2Etminani K, Naghibzadeh M. A min-min max-min selec-tive algorithm for grid task scheduling [ C ] // 2007 3 rdIEEE/IFIP International Conference in Central Asia onInternet, ICI 2007. Tashkent, Uzbekistan; [s. n.],2007: 1-7.
  • 3Baraglia R C,Gabriele D P, Pagano G. A multi-criteriajob scheduling framework for large computing farms [ J ].Journal of Computer and System Sciences, 2013,79(2):230-244.
  • 4Abbadi I M,Ruan A. Towards trustworthy resourcescheduling in clouds [ J]. IEEE Transactions on Informa-tion Forensics and Security, 2013,8(6) : 973-984.
  • 5GUIYI WEI, ATHANASIOS V VASILAKOS, YAO ZHENG, et al. A game-theoretic method of fair resource allocation for cloud computing services[ J]. The Journal of Supercomputing, 2010,54 ( 2 ) : 252 - 269.
  • 6YONGQIANG GAO, HAIBING GUAN, ZHENGWEI QI, et al. A multi-objective ant colony system algorithm for virtual machine placement in cloud computing[ J]. Jour- nal of Computer and System Sciences, 2013,79 ( 8 ) : 1230-1242.
  • 7RAFLMMEL. Google' s MapReduce programming model Revisited [ J ]. Science of Computer Programming, 2007, 70:1-30.
  • 8TARUN GOYAL, AJIT SINGH, AAKANKSHA AGRA- WAL. Cloudsim: simulator for cloud computing infra- structure and modeling [ J ]. Procedia Engineering, 2012,38:86-89.
  • 9YOUNG CHOON LEE, ALBERT Y ZOMAYA. Energy ef- ficient utilization of resources in cloud computing systems [ J ]. The Journal of Supercomputing ,2012,60:268-280.
  • 10孙大为,常桂然,李凤云,王川,王兴伟.一种基于免疫克隆的偏好多维QoS云资源调度优化算法[J].电子学报,2011,39(8):1824-1831. 被引量:53

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部