期刊文献+

基于提升小波的铁谱图像边缘检测 被引量:2

Edge Detection of Ferrography Image Based on Lifting Wavelet
下载PDF
导出
摘要 利用小波多尺度特性提取图像边缘是目前研究热点之一。铁谱图像磨粒边缘作为铁谱图像中最基本的特征,为铁谱图像特征提取提供了非常有价值的重要特征参数,在基于铁谱分析的机器故障诊断技术中有着重要的地位。将第二代提升小波算法应用于铁谱图像边缘检测:首先将彩色铁谱图像分解为R、G、B单通道图像,对三通道图像分别进行预处理,并利用直方图处理和图像深度转换实现磨粒和背景的分离;然后对各个通道图像进行D4提升小波变换,在小波域中,通过阈值判断提取高频子图中的边缘像素;最后通过或运算将各个通道的边缘进行融合得到最终的磨粒边缘图像。本文结果与Sobel算子和Canny算子的结果进行比较表明:本文中算法能有效的抑制噪声,较好地再现铁谱图像的磨粒边缘信息,是一种有效的铁谱图像边缘检测算法。 Multiscale wavelet analysis to image edge detection is a current research focus. The edge of grain is the basic feature in the ferrography image, providing important characteristic parameters for ferrography image~ feature extraction and playing a very important role in failure analysis based on ferrographic analysis technology. In this ar- ticle, the lifting wavelet transforms is used to edge detection of ferrograghy image. First, the color image of ferrogra- phy is segmented into RGB single channel images, preconditioning each single image and separating grains from the background by histogram and image depth conversion; Then, IM lifting wavelet is used to each single channel im- age, extracting pixels of edge from the sub-image in wavelet domain by threshold ; Lastly, the final edge images are obtained through OR operation. Compared with the Soble algorithm and the Canny algorithm, this article~ algorithm is more efficient at r^duoln~ n,,;~, t~,,~ ~h. oA~ ~.~:^- -c c L_ _'___
出处 《机械科学与技术》 CSCD 北大核心 2013年第10期1466-1470,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51205202)资助
关键词 特征提取 故障诊断 提升小波变换 边缘检测 edge detection grain boundavries pixels wavelet analysis wavelet transforms algorithms featureextraction finite element method failure analysis lifting wavelet transforms
  • 相关文献

参考文献12

  • 1王汉功,陈桂明.铁谱图像分析理论与技术[M].科学出版社,2005.
  • 2Song F J, Jutamulia S. New wavelet transforms for noise- insensitive edge detection [ J ]. Optical Engineering, 2004,41 ( 1 ) :50 -54.
  • 3Lee Y, Kozaitis S P. Muhiresolution gradient-based edge deted- tion in noisy images using wavelet domain filters [ J ]. Optical Engineering, 2004,39 ( 9 ) :2405 - 2414.
  • 4Shih M Y, Tseng D. A wavelet-hased multiresolution edge detec- tion and tracking[J].Image and Vision Computer, 2005,23 (4) :441 -451.
  • 5Sweldens W. The lifting scheme: a new philosophy in biorthogo- nal wavelet constructions [ A ]. Proceedings of SPIE [ C ], 1995,2569:68 ~ 79.
  • 6Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelet [ J ]. Applied and Computational Har- monic Analysis, 1996,3 ( 2 ) : 186 ~ 200.
  • 7Daubechies I, Sweldens W. Factoring wavelet transforms into lift- ing steps[J]. Journal of Fourier Analysis and Applications, 1998,4 ( 3 ) :247 ~ 268.
  • 8冈萨雷斯.数字图像处理(第二版)[M].电子工业出版社,2005.
  • 9Bradski&Kaehler著.于仕琪,刘瑞祯译.学习Opencv(中文版)[M].清华大学出版社.2009.
  • 10倪林.小波变换与图像处理[M].舍肥:中国科学技术大学出版社,2010.

二级参考文献11

  • 1[1]Sweldens W. The lifting scheme: a new philosophy in biorthogonal wavelet constructions [A]. Proceedings of SPIE [C]. 1995, 2569: 68-79.
  • 2[2]Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets [J]. Appl. Comput. Harmon. Anal., 1996, 3(2): 186-200.
  • 3[3]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. J. Fourier Anal., 1998-04, 4 (3): 247-268.
  • 4[4]ISO/IEC JTC1/SC29/WG1 WGIN 1684, JPEG 2000 Verification Model 7.0 [S]. 2000.
  • 5[5]Andra K, Chakrabarti C, Acharya T. A VLSI architecture for lifting-based wavelet transform [A]. The 2000 IEEE Workshop on Signal Processing Systems [C]. 2000: 70-79.
  • 6[6]Liu Baofang, Ping Xijian, Zhang Tao, Shao Meizhen. A new two-dimensional signal decomposition scheme using the extreme-lifting scheme [A]. WCCC-ICSP 2000,Proceedings of 5th International Conference on Signal Processing [C]. 2000, 1: 499-503.
  • 7[7]Chrysafis C, Ortega A. Line-based, reduced memory, wavelet image compression [J]. IEEE Transactions on Image Processing, 2000-03, 9 (3): 378-389.
  • 8[8]Jou Jer Min, Shiau Yeu-Horng, Liu Chin-Chi. Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme [A]. The 2001 IEEE International Symposium on Circuits and Systems [C]. 2001-05, 2: 529-532.
  • 9I Daubechies, Wim Sweldens.Factoring wavelet transforms into lifting steps[J].J Fourier Anal, 1998,4(3):245-267.
  • 10毕小红.小波分析在图像检测中的应用[J].计算机应用研究,2002,19(4):91-92. 被引量:5

共引文献7

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部