期刊文献+

基于NSGA-Ⅱ算法的管道清灰机器人变径机构优化 被引量:1

Optimization of the Changed Diameter Mechanism in In-pipe Clearing Robot based on the NSGA-Ⅱ Algorithm
下载PDF
导出
摘要 管道清灰机器人变径机构尺度影响机构的运动性能及驱动性能,变径机构尺度优化可有效解决尺寸综合问题。提出了变径机构多目标尺度综合,以变径机构关键零件受力和驱动件运动范围为优化目标建立优化模型,基于快速含有精英策略的非支配排序遗传算法(Non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)求解多目标优化Pareto最优解。计算结果表明:多目标优化后的变径机构在力学性能和运动范围上优于经验设计,不需重复计算可根据设计要求和工程经验权衡选取满足不同要求的优化结果。 The changed diameter mechanism in the in-pipe clearing robot influnence on motion performances and drive performances, the mechanism optimzation can solve mechanism systhesis probleme efficiently, on the base of analysing kinematics and mechanics, multi-objective dimension synthesis of the changing diameter mechanism is put forword. Using force on the key part and movement range of the drive part of the changed diameter mechanism as optimization objectives, multi-objective optimization Pareto optimal solutions using non-dominated sorting genetic algorithm II (NSGA-II) is solved. The optimization results show that the optimal changed diameter mechanism in the in-pipe clearing robot has a good mechanics performance and range of movement. Without repeating calcula- tion, the optimization results which meet different requirements is selected according to design requriements and engineering experiences.
出处 《机械科学与技术》 CSCD 北大核心 2013年第10期1514-1517,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 天水师范学院中青年教师科研项目(TSA1009)资助
关键词 管道机器人 机构 优化 算法 pipe robot mechanisms optimization algorithm
  • 相关文献

参考文献8

  • 1Horodinea M, Doroftei I, Mignon E, et al. A simple architecture for in-pipe inspection robots [ A ]. Colloquium on Mobile and Autonomous Systems, 10 Years of the Fraunhofer IFF [ C ], Magdeburd, Germany, 2002:61 ~ 64.
  • 2Anthierens C, Ciftci A, Betemps A. Design of an electro pneu- matic micro robot for in-pipe inspection [ A ]. Industrial Elec- tronics, 1999, Proceedings of the IEEE International Sympo- siura on Bled[ C ] , Slovenia, 1999:968 ~ 972.
  • 3邓宗全,陈军,姜生元,孙东昌.六独立轮驱动管内检测牵引机器人[J].机械工程学报,2005,41(9):67-72. 被引量:53
  • 4Chio H R, Ryew S M. Robotic system with active steering capabil- ity for internal inspection of urban gas pipelines[ J]. Mcdmtron- ies, 2002,12(5) :716 -736.
  • 5张淑珍,黄建龙,李春玲.改进型管道清灰机器人系统研究[J].机械与电子,2009,27(12):62-64. 被引量:3
  • 6Sergiu-Dan Stan, et al. Genetic Algorithms Multi-objective Opti- mization of a 2 DOF Micro Parallel Robot [ A ]. Proceedings of the 2007 IEEE International Symposium on Computational Intelligence in Robotics and Automation Jacksonville [ C ], Hsinchu, June 20 -23,2007:522 -527.
  • 7Deb K, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Comput- ation, 2002,6(2) :182 - 197.
  • 8张超勇,董星,王晓娟,李新宇,刘琼.基于改进非支配排序遗传算法的多目标柔性作业车间调度[J].机械工程学报,2010,46(11):156-164. 被引量:139

二级参考文献17

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:110
  • 2杨清梅,王立权,王知行.一种新型排水管道机器人研究[J].机床与液压,2006,34(3):120-122. 被引量:18
  • 3张淑珍,杨萍,袁晓鹏.管道清灰机器人系统设计[J].机械设计与制造,2006(8):125-127. 被引量:8
  • 4吴秀丽,孙树栋,杨展,翟颖妮.多目标柔性Job Shop调度问题的技术现状和发展趋势[J].计算机应用研究,2007,24(3):1-5. 被引量:19
  • 5GAREY E L,JOHNSON D S,SETHI R.The complexity of flowshop and job-shop scheduling[J].Mathematics of Operations Research,1976,1:117-129.
  • 6DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 7CRONE D W,KNOWLES J D,OATES M J.The pareto envelope-based selection algorithm for multi-objective optimization[C] //SCHOENAUER M,DEB K,RUDOLPH G,et al.Proceedings of the Parallel Problem Solving from Nature Ⅵ Conference,Paris,France.Lecture Notes in Computer Science:Springer,2000,1 917:839-848.
  • 8KNOWLES J,CORNE D.The Pareto archived evolution strategy:a new baseline algorithm for multiobjective optimization[C] //Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,1999:98-105.
  • 9ZITZLER E,THIELE L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary Computation,2000:8(2):173-195.
  • 10SRINIVAS N,DEB IC Multi-objective function optimization using non-dominated sorting genetic algorithm[J].Evolutionary Computation.1995,2(3):221-248.

共引文献190

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部