期刊文献+

稀疏重构的压缩感知语声增强模型与算法 被引量:2

Speech Enhancement Model and Algorithm Based on Sparse Signal Reconstruction in Compressive Sensing
下载PDF
导出
摘要 语声增强的目的在于消除带噪语声信号中的噪声干扰,提高语声信号的可听度与可懂度。与传统语声增强算法不同,本文利用语声信号与噪声信号的稀疏性差异,提出了一种基于稀疏重构的压缩感知语声增强模型,并导出该模型的数学表达式。基于此语声增强模型,本文还融入了语声信号的稀疏性与非平稳性,提出了语声存在概率为加权因子的加权正交匹配追踪语声增强算法。仿真实验表明本文提出的语声增强模型与算法具有可行性、有效性以及优越性。本算法不仅可以有效的抑制噪声干扰,还可以保留大部分语声信号,达到语声增强的目的。此外,与谱减法和最小均方误差算法比较,虽然本文算法计算量较大,但是其性能优越。 The objective of speech enhancement is to eliminate noise interference in noisy speech signal and to improve both speech quality and speech intelligibility. Different from traditional speech enhancement algorithms, this paper utilizes the difference of sparsity between speech and noise signal, presents the speech enhancement model based on sparse signal reconstruction in compressive sensing and draws its mathematical expression. According to this speech enhancement model, this paper also takes into account the sparsity and non-stationarity of speech signal, and proposes an orthogonal matching pursuit speech enhancement algorithm weighted with speech presence probability. Experimental results show that the pro- posed speech enhancement model and algorithm is feasible, effective and superior. The proposed algorithm not only can e- liminate noise interference but also can reserve most of speech signal. Therefore, the objective of speech enhancement is at- tained. Furthermore, compared with spectral subtraction algorithm and minimum mean square error algorithm, the proposed algorithm is less efficiently computable, however, its performance is better.
作者 李洋 李双田
出处 《信号处理》 CSCD 北大核心 2013年第9期1120-1126,共7页 Journal of Signal Processing
关键词 语声增强 稀疏重构 压缩感知 加权因子 加权正交匹配追踪 speech enhancement sparse signal reconstruction compressive sensing weighting factor weighted orthogo-nal matching pursuit
  • 相关文献

参考文献22

  • 1Boll S.Suppression of acoustic noise in speech using spectral subtraction[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1979,27 (2):113-120.
  • 2Ephraim Y,Malah D.Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1984,32(6):1109-1121.
  • 3Ephraim Y,Van Trees H L.A signal subspace approach for speech enhancement[J].Speech and Audio Processing,IEEE Transactions on,1995,3(4):251-266.
  • 4Donoho D L.Compressed sensing[J].Information Theory,IEEE Transactions on,2006,52(4):1289-1306.
  • 5Candès E J,Romberg J,Tao T.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].Information Theory,IEEE Transactions on,2006,52 (2):489-509.
  • 6Candès E J,Wakin M B.An introduction to compressive sampling[J].Signal Processing Magazine,IEEE,2008,25(2):21-30.
  • 7焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 8Christensen M G,Ostergaard J,Jensen S H.On compressed sensing and its application to speech and audio signals[C].Signals,Systems and Computers,2009 Conference Record of the Forty-Third Asilomar Conference on.IEEE,2009:356-360.
  • 9周小星,王安娜,孙红英,杨鸿武.基于压缩感知过程的语音增强[J].清华大学学报(自然科学版),2011,51(9):1234-1238. 被引量:17
  • 10Adler A,Emiya V,Jafari M G,Elad M,Gribonval R,Plumbley M D.A constrained matching pursuit approach to audio declipping[C].Acoustics,Speech and Signal Processing (ICASSP),2011 IEEE International Conference on.IEEE,2011:329-332.

二级参考文献110

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2Loizou P C. Speech Enhancement: Theory and Practice [M]. USA CRC Press, 2007.
  • 3Baraniuk R G. Compressive sensing [J]. IEEE Signal Processing Magazine, 2007, 24(4): 118-124.
  • 4Candes E, Wakin M. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21- 30.
  • 5Blumensath T, Davies M E. Gradient pursuits [J]. IEEE Transaction on Signal Processing, 2008, 56(6) : 2370 - 2382.
  • 6Tropp J, Gilbert A. Signal recovery from random measurements via orthgonal matching pursuit[J].Transaction on information theory, 2007, 53(12): 4655-4666.
  • 7Yi Hu, Loizou P C. Subjective comparison and evaluation of speech enhancement algorithms [J]. Speech Communication, 2007, 49(7-8), 588-601.
  • 8Emmanuel J. Candès,Michael B. Wakin,Stephen P. Boyd.Enhancing Sparsity by Reweighted ? 1 Minimization[J]. Journal of Fourier Analysis and Applications . 2008 (5-6)
  • 9Richard Baraniuk,Mark Davenport,Ronald DeVore,Michael Wakin.A Simple Proof of the Restricted Isometry Property for Random Matrices[J]. Constructive Approximation . 2008 (3)
  • 10B. S. Kashin,V. N. Temlyakov.A remark on Compressed Sensing[J]. Mathematical Notes . 2007 (5-6)

共引文献331

同被引文献47

  • 1杨宇山,李媛媛,刘天佑.高阶统计量在地震弱信号及"磁亮点"识别中的应用[J].石油地球物理勘探,2005,40(1):103-107. 被引量:17
  • 2Loizou P C. Speech enhancement: theory and practice [ M]. CRC press, 2013.
  • 3Boll S. Suppression of acoustic noise in speech using spec- tral subtraction [ J ]. Acoustics, Speech and Signal Pro- cessing, IEEE Transactions on, 1979, 27(2) : 113-120.
  • 4Ephraim Y, Malah D. Speech enhancement using a mini- mum-mean square error short-time spectral amplitude es- timator [ J ]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1984, 32(6) : 1109-1121.
  • 5Hu Y, Loizou P C. A generalized subspace approach for enhancing speech corrupted by colored noise[ J]. Speech and Audio Processing, IEEE Transactions on, 2003, 11 (4) : 334-341.
  • 6Wang D L. On ideal binary mask as the computational goal of auditory scene analysis [ J ]. Speech Separation by Humans and Machines, 2005, 60: 63-64.
  • 7Bertalmio M, Sapiro G, Caselles V, et al. Image inpaint- ing[ C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques. ACM Press/Addison-Wesley Publishing Co. , 2000: 417-424.
  • 8Elad M, Figueiredo M A T, Ma Y. On the role of sparse and redundant representations in image processing [ J ]. Proceedings of the IEEE, 2010, 98(6): 972-982.
  • 9Donoho D L. Compressed sensing[J]. Information Theo- ry, IEEE Transactions on, 2006, 52(4) : 1289-1306.
  • 10Adler A, Emiya V, Jafari M G, et al. Audio inpainting [J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2012, 20(3): 922-932.

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部