期刊文献+

复杂场景下的极化SAR图像机场跑道检测 被引量:6

Runways Detection in Complex Scenes of Polarimetric Synthetic Aperture Radar Image
下载PDF
导出
摘要 提出一种基于极化分解分类与结构特征相结合的复杂场景全极化SAR图像机场跑道检测方法。首先利用先验信息粗选图像中各类样本目标进行H/α分解提取图像中各类训练样本,然后根据极化SAR图像的统计特性,利用贝叶斯分类器对图像进行分类,提取图像中机场跑道疑似区域,再结合机场跑道的五种结构特征用二叉树法进行判别,最终确定机场跑道区域。利用美国UAVSAR系统采集的多组全极化实测数据对算法进行实验,结果表明,该算法能够有效地检测出跑道,且检测的跑道结构完整,轮廓清晰,虚警率低。 In this paper, a new algorithm of runways detection based on polarimetric decomposition and structural char- acteristics in complex scenes of fully polarimetric synthetic aperture radar image is proposed. Firstly, training samples are obtained according to the priori of backward scattering mechanism of the terrain and Ilia decomposition. Then runway sus- pected areas are achieved after Bayesian classification combining the statistical characteristic of covariance matrix and the training samples. Finally, binary decision tree is used to identify runways combining with five structural characteristics, to e- liminate the suspected runway areas and to finalize the airport runway region. Multi-look fully polarimetric SAR datas ac- quired by U. S. UAVSAR systems is used to verify the new algorithm. The experimental results show that the novel method can detect runways effectively. Besides, the detected runways own a intact structure, clear outlines and low false alarm rate.
作者 韩萍 徐建飒
出处 《信号处理》 CSCD 北大核心 2013年第9期1220-1226,共7页 Journal of Signal Processing
基金 国家自然科学基金重点项目(61231017) 中央高校基金(ZXH2012D001) 中国民航大学科研基金(2012KYE03) 中央高校基本科研业务费资助项目(3122013SY26)
关键词 极化合成孔径雷达 跑道检测 H/α分解 图像分类 二叉树 polarimetric synthetic aperture radar runways detection H/α decomposition image classification binary tree
  • 相关文献

参考文献13

二级参考文献64

共引文献58

同被引文献54

  • 1王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 2赵杰文,方明,刘木华,陈全胜,李鹏飞.基于Ohta和RGB颜色空间牛胴体背长肌的分割[J].江苏大学学报(自然科学版),2006,27(3):189-192. 被引量:5
  • 3ZIVKOVIC Z. Improved adaptive Gaussian mixture mod- el for background subtraction [ C ]//Proceedings of the 17th International Conference on Pattern Recognition, 23- 26 August 2004. Piscataway, N.J.:IEEE,20IM. 28-31.
  • 4TSAI L W,HSIEH J W,FAN K C. Vehicle detection using normalized color and edge map [J]. IEEE Trans- actions on Image Processing, 2007,16 (3) : 850-864.
  • 5WANG X Y, ZHANG J L. A traffic incident detection method based on wavelet Mallat algorithm [C]//Pro- ceedings of the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, 28-30 June 2005Piscataway, N.J.:IEEE,2005.166-172.
  • 6CHENG S C, YANG C K. A fast and novel technique for color quantization using reduction of color space di- mensionality[J]. Pattern Recognition Letters, 2001, 22 (8) : 845-856.
  • 7BOYKOV Y, VEKSLER O, ZABIH R. Fast approxi-mate energy minimization via graph cuts[J]. IEEE Trans- actions on PMAL Pattern Analysis and Machine Intel- ligence, 2001,23(11 ) : 1222-1239.
  • 8Tao M L, Zhou F, Liu Y, et al. Tensorial independent component analysis-based feature extraction for polarime- tric SAR data classification [ J ]. IEEE Trans on Geosci Remote Sens, 2015, 53 (5): 248t-2495.
  • 9Lee J S, Grunes M R, Ainsworth T L, et al. Unsuper- vised classification using polarimetric decomposition and the complex Wishart classifier[ J ]. IEEE Trans on Geosci Remote Sens, 1999, 37 (5) : 2249-2258.
  • 10Ersahin K, Gumming I G, Ward R K. Segmentation and classification of polarimetrie SAR data using spectral graph partitioning [ J ]. IEEE Trans on Geosci Remote Sens, 2010, 48(1): 164-174.

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部