期刊文献+

广义空间调制系统的稀疏检测算法 被引量:1

Sparse Detection Algorithm for Generalized Spatial Modulation Systems
下载PDF
导出
摘要 空间调制技术作为一种新颖的多天线传输技术,这些年来受到业界的广泛关注,从单一激活天线的空间调制已扩展到多根激活天线的广义空间调制,进一步提高了频带效率。但是,采用多根激活天线发送也给系统的解调带来了困难。由于多激活天线的使用,最大似然(ML)检测算法的计算复杂度将随着激活天线数的增加呈指数增加,是一个NP-hard问题。针对上述问题,本文利用空间调制信号本身固有的稀疏特性,提出了一种次最优检测算法,新算法可以在保证检测性能的前提下,大大降低算法的计算量。不仅如此,由于稀疏性的引入,新算法还可以应用到发送天线数大于接收天线数的情况,计算机仿真试验验证了其有效性。 Spatial modulation (SM) has received much attention recently as a novel multi-antenna technology. The spa- tial modulation with single-active antenna has been expanded to generalized spatial modulation with muhi-active antenna, further improving the transmission rate. However, this makes the demodulation more difficult. The complexity of ML detec- tion algorithm will increase exponentially with the augment of activated antenna, and then the ML algorithm becomes a NP- hard problem. To solve these issues, we exploited the inherent sparse property of the spatial modulation signal and proposed a sub-optimal detection algorithm. Our numerical experiments show that the proposed algorithm can guarantee the detection performance as well as reducing the complexity. Moreover, due to the use of sparsity, our proposed approach can also be applied in the underdetermined system.
出处 《信号处理》 CSCD 北大核心 2013年第9期1233-1237,共5页 Journal of Signal Processing
基金 国家自然科学基金"部分修正RLS算法及多项式预失真技术研究"(60871046) 辽宁省自然科学基金"基于Landweber正则化方法的数字波束形成算法研究"(2013020033)
关键词 广义空间调制 稀疏特性 最大似然检测 Generalized spatial modulation Sparsity Maximum likelihood detection
  • 相关文献

参考文献9

  • 1Mesleh R,Hass H,Sinanovic S,etc.Spatial modulation[J].IEEE Transaction on Vehicular Technology,2008,57(4):2228-2241.
  • 2Jeganathan J,Ghrayeb A,Szczecinski L.Spatial modulation:optimal detection and performance analysis[J].IEEE Communication Letters,2008,12 (8):545-547.
  • 3Marco Di Renzo,Harald Haas and Peter M.Grant.Spatial Modulation for Multiple-Antenna Wireless Systems:A Survey[J].IEEE Communications Magazine,2011,49(12):182-191.
  • 4Abdelhamid Younis,Nikola Serafimovski,Raed Mesleh,and Harald Haas.Generalised Spatial Modulation[C].Signals,Systems and Computers (ASILOMAR),2010Conference Record of the Forty Fourth Asilomar Conference on,2010:1498-1502.
  • 5李少东,杨军,胡国旗.一种改进的压缩感知信号重构算法[J].信号处理,2012,28(5):744-749. 被引量:10
  • 6朱延万,赵拥军,孙兵.一种改进的稀疏度自适应匹配追踪算法[J].信号处理,2012,28(1):80-86. 被引量:35
  • 7石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 8Scott Shaobing Chen,David L.Donoho,Michael A.Saunders.Atomic Decomposition by Basis Pursuit[J].Society for Industrial and Applied Mathematics,2001,43(1):129-159.
  • 9E.J.Candes and T.Tao.Robust Uncertainty Principles:Exact Signal Reconstruction From Highly Incomplete Frequency Information[J].IEEE Transactions on information theory,2006,52(2):489-509.

二级参考文献105

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献748

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部