期刊文献+

蓝藻生物节律性分子调控机制的研究进展 被引量:5

Progress in the Molecular Mechanism of Circadian Clock in Cyanobacterium
下载PDF
导出
摘要 生物钟现象是一种普遍存在于生物界细胞的内源节律性保持机制。生物钟机制的存在可以使生物体的代谢行为产生并维持以24 h为周期的昼夜节律,从而更好地适应于地球自转所产生的环境条件昼夜间节律性变化。蓝藻是目前生物钟分子机制研究中的模式生物,其依赖于kai基因家族成员的核心生物钟调控模式已经被众多研究者详细阐明。蓝藻生物钟的核心振荡器是由蓝藻kaiA/B/C的编码产物来调控的,Kai蛋白的表达模式具有节律性。KaiC蛋白磷酸化状态的节律性循环及输入、输出途径相关组成蛋白的翻译后修饰状态节律性循环共同组成其反馈回路,负责维持生物钟节律性振荡的持续进行并与环境周期保持同步。传统的蓝藻生物钟分子机制模型认为,节律性表达基因翻译产物的转录/翻译负反馈抑制环是生物节律性维持和输出的关键。遗憾的是,在其它物种生物钟分子机制研究中未发现由kai基因家族成员同源基因组成的节律性标签,这表明以kaiA/B/C为核心振荡器的生物钟系统并不是一种跨物种保守的生物钟系统。近期,人们发现非转录/翻译依赖的振荡器(NTO)也具有成为生物节律性产生和维持的"源动力"的可能。过氧化物氧化还原酶(PRX)氧化还原状态节律性是第一种被报道的跨物种保守的NTO节律性标签,这也日渐成为蓝藻生物钟分子机制研究新的热点。 Circadian clocks are endogenous time-keeping mechanisms which are ubiquitous in a variety of o rganisms from bacteria to mammals. In order to coordinate with and adapt to the daily environmental changes which are driven by the self-rolling of the earth, the circadian clock controls various metabolic and biological activities with a circle period of 24 h. One of the cyanobacterial species, Synechococcus elongatus PCC7942 is a model organism for the circadian clock system. Three proteins encoded by the kaiA/t3/C gene cluster, which is functional basis for the circadian rhythm, generate the basic timing loop of the circadian clock in Synechococcus. Circadian time clue is transmitted from the KaiABC-based central oscillator to the clock-controlled transcription factors~ KaiC, an autokinase and autophosphatase, is the central component of the cyanobacterial circadian clock. The daily auto-phosphorylation and auto-dephosphorylation cycle of KaiC and the post-translational modification of the proteins, which consisted the inputing and output pathways of the circadian clock, have composed the transcriptional and translational feed- back loop (TTFL). In traditional theory of circadian clock model in cyanobacteria, TTFL regulation of clock genes are thought to be essential for sustaining and outputing of the basic circadian timing loop in Synechococcus. But surprisingly, KaiABC-based central oscillators are only found in cyanobacteria and very few prokaryotic species. It seems that this Kai-based clock is not an ubiquitous time-keeping mechanism that has been selected by organisms during natural evolution. Recently, some circadian clock research groups have demonstrated that non-transcriptional and translational oscillators could be the driving force of the generating and sustaining of biological circadian rhythm. The peroxiredoxins (PRX) are reported to be conserved markers of circadian rhythms, which are also thought to be a new focus of the researches on the molecular mechanism of circadian clock in cyanobacteria.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2013年第5期677-684,共8页 Genomics and Applied Biology
基金 国家自然科学基金项目(31200091和J1210063) 陕西省重点实验室科研计划项目(2010JS092和12JS104) 陕西省教育厅科学研究项目计划(2010JK855) 公益性行业(农业)科研专项经费项目(201203062) 陕西省大学生创新计划项目 西北大学大学生创新计划项目共同资助
关键词 蓝藻 节律性 钟基因 非转录依赖的振荡器 转录-翻译负反馈回路 Cyanobacteria rhythmic, Clock gene, Non-transcriptional oscillator, Transcriptional-translational feedback loop
  • 相关文献

参考文献44

  • 1Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F., Mostoslavsky R., Alt F.W., and Schibler U., 2008, SIRT1 regulates circadian clock gene expression through PER2 deacetylation, Cell, 134(2): 317-328.
  • 2Dvomyk V., Vinogradova O., and Nevo E., 2003, Origin and evolution of circadian clock genes in prokaryotes, Proc. Natl. Acad. Sci. USA, 100(5): 2495-2500.
  • 3Edery I., 2000, Circadian rhythms in a nutshell, Physiol. Genomics, 3(2): 59-74.
  • 4Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., Maywood E.S., Hastings M.H., Baliga N.S., Merrow M., Millar A.J.,Johnson C.H., Kyriacou C.P., O'Neill J.S., and Reddy A.B., 2012, Peroxiredoxins are conserved markers of circadian rhythms, Nature, 485(7399): 459-464.
  • 5Garces R.G., Wu N., Gillon W., and Pai E.F., 2004, Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC, EMBO J., 23 (8): 1688-1698.
  • 6Golden S.S., 2003, Timekeeping in bacteria the cyanobacterial circadian clock, Current Opinion in Microbiology, 6(6): 535-540.
  • 7Golden S.S., Johnson C.H., and Kondo T., 1998, The cyanobacte- rial circadian system: A clock apart, Curr. Opin. Microbiol., 1 (6): 669-673.
  • 8Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C.R., Tanabe A., Golden S.S., Johnson C.H., and Kondo T., 1998, Expression of a gene cluster ka/ABC as a circadian feedback processin Cyanob acleria, Science, 281(5382): 1519-1523.
  • 9Iwasaki H., Williams S.B., Kitayama Y., Ishiura M., Golden S.S., and Kondo T., 2000, A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadianoscillation in cyanobacteria, Cell, 101(2): 223-233.
  • 10Katayama M., Tsinoremas N.F., Kondo T., and Golden S.S., 1999, cpmA, a gene involved in an output pathway of the cyanobac- terialcircadian system, Bacteriol., 181(11): 3516-3524.

二级参考文献141

  • 1徐虹,章军.蓝藻生物钟分子机制研究进展[J].海洋科学,2004,28(7):61-66. 被引量:5
  • 2周先举,袁春燕,杨旭科,郭爱克.果蝇昼夜节律的分子机制研究进展[J].生物化学与生物物理进展,2005,32(1):3-8. 被引量:14
  • 3[3]Ripperger J A,Schibler U.Circadian regulation of gene expres sion in animals.Curr Opin Cell Biol,2001,13:357~362.
  • 4[4]Dunlap J C.Molecular bases for circadian clock.Cell,1999,96:271~290.
  • 5[5]Young M W.Circadian rhythms-marking time for a kingdom.Science,2000,288:451 ~ 453.
  • 6[6]Ishiura M,Kutsuna S,Aoki S,Iwasaki H,Andersson C R,Tan abe A,Golden S S,Johnson C H,Kondo T.Expression of a gene cluster kaiABC as a circadian feedback process in Cya nobacleria.Science,1998,281:1519~1523.
  • 7[7]Xu Y,Mori T,Johnson C H.Circadian clock-protein expression in Cyanobacteria:rhythms and phase setting.EMBO J,2000,19:3349~3357.
  • 8[8]Barinaga M.New timepiece has a familiar ring.Science,1998,281:1429~1431.
  • 9[9]Mori T,Johnson C H.Independence of circadian timing from cell di vision in Cyanobacteria.J Bacteriol,2001,183:2439~ 2 444.
  • 10[10]Schmitz O,Katayama M,Williams S B,Kondo T,Golden S S.CikA,a bacteriophytochrome that resets the cyanobacterial cir cadian clock.Science,2000,289:765 ~ 768.

共引文献39

同被引文献45

  • 1徐张红,赵晓刚,何奕昆.拟南芥生物钟分子机制研究进展[J].植物学通报,2005,22(3):341-349. 被引量:6
  • 2赵琳,李文滨,杨春亮.光周期控制拟南芥和水稻开花反应差异性的分子生物学研究进展[J].东北农业大学学报,2006,37(1):93-101. 被引量:3
  • 3Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev, 2010, 24:345-357.
  • 4Ishiura M, Kutsuna S, Aoki S, et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyano- bacteria. Science, 1998, 281:1519-1523.
  • 5Brown SA, Kowalska E, Dallmann R. (Re)inventing the circadian feedback loop. Dev Cell, 2012, 22:477-487.
  • 6Teng SW, Mukherji S, Moffitt JR, et al. Robust circadian oscillations in growing cyanobacteria require transcriptional feedback. Science, 2013, 340:737-740.
  • 7Johnson CH. Testing the adaptive value of circadian systems. Method Enzymol, 2005, 393:818-837.
  • 8Johnson CH. Bacterial circadian programs. Cold Spring Harbor Laboratory Press, 2007, 72:395-404.
  • 9Nakajima M, Imai K, Ito H, et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science, 2005, 308:414-415.
  • 10Iwasaki H, Williams SB, Kitayama Y, et al. A KaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell, 2000, 101:223-233.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部