期刊文献+

一类具抽象边界条件的迁移算子的谱分布 被引量:2

The spectrum distribution of a transport operator with abstract boundary condition
下载PDF
导出
摘要 利用线性算子半群理论,研究了板几何中具抽象边界条件的各向异性、连续能量、非均匀介质的迁移方程.在假设边界算子H部分光滑和扰动算子K正则的条件下,采用豫解方法,得到了该迁移算子A的谱在区域Γ中由至多可数个具有限代数重数的离散本征值组成等结果. In this paper, transport operator equation of anisotropic continuous energy nonhomogeneous with abstract boundary condition in slab geometry is studied. Supposing that the H is partly smooth and K is regular, the spectrum of the transport operator A consists of, at most, isolated eigenvalues with finite algebraic multiplicities in the trip F is obtained. The main method relies on theory of semigroups of linear operators and solution method.
出处 《纯粹数学与应用数学》 CSCD 2013年第5期489-497,共9页 Pure and Applied Mathematics
基金 江西省自然科学基金(20132BAB201002) 江西省教育厅科技项目(GJJ13706 GJJ13703)
关键词 迁移算子 抽象边界条件 非均匀 部分光滑算子 离散本征值 transport operator, abstract boundary condition, nonhomogeneous, partly smooth operator,discrete eigenvalues
  • 相关文献

参考文献8

  • 1Lehner J, Wing G M. On the spectrum of an unsymmetric operator arising in the transport theory of neu- tron [J]. Comm. Pure. Appl. Math., 1955,8:217-234.
  • 2Khalid Latrach, Abdelkader Dehici. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry [J]. Mathematical Methods in the Applied Sciences, 2001,24:689-711.
  • 3王胜华,吴红星.板几何中具反射边界条件的迁移算子的谱分析[J].数学的实践与认识,2008,38(22):197-203. 被引量:13
  • 4Khalid Latrach, Hatem Megdiche. Spectral properties and regularity of solutions to transport equations in slab geometry [J]. MathematicM Methods in the Applied Sciences, 2006,29:2089-2121.
  • 5Latrach K, Megdiche H, Taoudi M A. Compactness properties for perturbed semigroups in Banach spaces and application to a transport model [J]. J. Math. Anal. Appl., 2009,359:88-94.
  • 6王胜华,黄伟.板几何中一类具抽象边界条件迁移算子的谱[J].应用泛函分析学报,2011,13(3):267-273. 被引量:13
  • 7Mokhtar Kharroubi M. Time asymptotic behaviour an compactness in neutron transport theory [J]. European Journal of Mechanics B Fluids, 1992,11:39-68.
  • 8王胜华.一类具广义边界条件参数方程的解[J].纯粹数学与应用数学,1992,8(1):116-117. 被引量:4

二级参考文献16

  • 1王胜华,马江山.板几何中具反射边界条件的迁移算子的谱[J].应用泛函分析学报,2007,9(1):90-96. 被引量:3
  • 2Khalid Latrach, Abdelkader Dehici. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry[J]. Mathematical Methods in the Applied Sciences,2001,24:689-711.
  • 3Wang Shenghua, Yang Mingzhu, Xu Genqi. The spectrum of the transport operator with generalizcd boundary conditions [J]. Transport Theory and Statistical Physics, 1996,25 (7):811- 823.
  • 4Morhtar Kharroubi M. Time asymptotic behaviour and compactness in neutron transport theory [J]. European Journal of Mechanics B Fluid,1992,11:39-68.
  • 5Mohamed Chabi, Khalid Latrach. Singular one-dimensional transport equations on space [J]. Journal of Mathematical Analysis and Applications. 2003. 383 : 319-336.
  • 6Latrach K, Mokhtar-Kharroubi M. Spectral analysis and generation results for streaming operatorswith multiplying boundary conditions[J]. Kluwer Academic, 1999, 3: 273-296.
  • 7Latrach K. On the spectrum of the transport operator with abstract boundary conditions in slap geome- try[J]. Journal of Mathematical Analysis and Applications, 2000, 252: 1-17.
  • 8Boulanouar M. Generation theorem for the streaming operator in slab geometry[J]. Journal of Dynamical and Control Systems, 2003, 33-51.
  • 9Lods B, Sbihi M. Stability of the essential spectrum for 2D-transport models with Maxwell boundary conditions[J]. Mathematical Methods in the Applied Sciences, 2006, 29: 499-523.
  • 10Latrach K, Megdiche H. Spectial properties and regularity of solutions to transport equations in slab geometry [J]. Mathematical Methods in the Applied Sciences, 2006, 29: 2089-2121.

共引文献23

同被引文献26

  • 1王胜华,贾善德.板几何中一类具周期边界条件迁移算子的谱[J].西南师范大学学报(自然科学版),2005,30(6):964-970. 被引量:12
  • 2Lehner. J and Wing. G. M. Solution of the linearized Boltmaann equation for the slap geometry[ J ]. Duke. Mate, 1956,23:125- 142.
  • 3Khalid Latrach and Abdelkader Dehici. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry [J]. Mathematical Methods in the Applied Sciences,2001,24: 689- 711.
  • 4Wang Shenghua, Yang Mingzhu, Xu Genqi. The spectnml of the transport operator with generalized boundary conditions[ J ]. Transport The- ory and Statistical Physics, 1996,25 (7) : 811 - 823.
  • 5Voigt J. Spectral properties of the neutron transport Equation[ J]. Journal of Mathematical Analysis and Applications , 1985, 106:140 - 153.
  • 6Lehner J, Wing C M. On the spectrum of an unsymmetric operator arising in the transport neutron. Communications on Pure and Applied Mathematics, 1955, 8:217-234.
  • 7Mokhtar-Kharroubi M. Time asymptotic behaviour an compactness in neutron transport theory. Journal of Mechanics B: Fluids. 1992. 11:39-68.
  • 8Latrach K, Dehici A. Spectral properties and time asymptotic behaviour of linear transport equations in slab geometry. Mathematical Methods in the Applied Sciences, 2001, 24:689-711.
  • 9Chabi M, Latrach K. Singular one-dimensional transport equations on L1 space. Journal of Mathematical Analysis and Applications, 2003, 383:319-336.
  • 10Jeribi A, Mahmoud S O, Sfaxi R. Time asymptotic behaviour for a one-velocity transport operator with Maxwell boundary condition. Acta Applicandae Mathematicae, 2007, 3:163-179.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部