期刊文献+

基于机器翻译的跨语言关系抽取 被引量:2

Cross-Lingual Relation Extraction Via Machine Translation
下载PDF
导出
摘要 训练语料库的规模对基于机器学习的命名实体间语义关系抽取具有重要的作用,而语料库的人工标注需要花费大量的时间和人力。该文提出了使用机器翻译的方法将源语言的关系实例转换成目标语言的关系实例,并通过实体对齐策略将它们加入到目标语言的训练集中,从而使资源丰富的源语言帮助欠资源的目标语言进行语义关系抽取。在ACE2005中英文语料库上的关系抽取实验表明,无论是将中文翻译成英文,还是将英文翻译成中文,都对另一种语言的关系抽取具有帮助作用。特别是当目标语言的训练语料库规模较小时,这种帮助就尤其显著。 The scale of training corpus plays an important role in machine learning-based semantic relation extraction between named entities,however,the annotation of corpus is time-consuming and labor-intensive.In order that a resource-rich language can help a resource-poor language in semantic relation extraction,we propose an approach to transforming relation instances from the source language to the target language via machine translation,and then add them into the training corpus of the target language by way of entity alignment.The experiments on the ACE2005Chinese and English corpora show that,Chinese and English can help each other in relation extraction.Furthermore,this help is particularly significant especially when the scale of training corpus in target language is small.
出处 《中文信息学报》 CSCD 北大核心 2013年第5期191-197,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60873150 90920004) 江苏省自然科学基金资助项目(BK2010219) 江苏省高校自然科学重大项目(11KJA520003)
关键词 跨语言关系抽取 机器翻译 实体对齐 Cross-lingual relation extraction machine translation entity alignment
  • 相关文献

参考文献24

  • 1Guodong Zhou,Min Zhang.Extracting relation information from text documents by exploring various types of knowledge[J].Information Processing and Management,2007,43:969-982.
  • 2奚斌,钱龙华,周国栋,朱巧明,钱培德.语言学组合特征在语义关系抽取中的应用[J].中文信息学报,2008,22(3):44-49. 被引量:16
  • 3Dandan Liu,Zhiwei Zhao,Yanan Hu,et al.Incorporating Lexical Semantic Similarity to Tree KernelBased Chinese Relation Extraction[C]//Proceedings of Computer School Center for Study of Language & Information.The 13th Chinese Lexical Semantics Workshop.Wuhan:Wuhan University,2012:133-139.
  • 4Jong-Hoon Oh,Kiyotaka Uchimoto,Kentaro Torisawa.Bilingual Co-Training for Monolingual HyponymyRelation Acquisition[C]//Proceedings of ACL,Singapore,2009:432-440.
  • 5Min Zhang,Jian Su,Danmei Wang,et al.Discovering Relations from a Large Raw Corpus Using Tree Similarity-based Clustering[C]//Proceedings of IJCNLP,2005:378-389.
  • 6Fei Wu,Daniel S Weld.Open information extraction using wikipedia[C]//Proceedings of ACL.2010:118-127.
  • 7Seokhwan Kim,Minwoo Jeong,Jonghoon Lee,et al.A Cross-lingual Annotation Projection Approach for Relation Detection[C]//Proceedings of Coling,Beijing,2010:564-571.
  • 8Nanda Kambhatla.Combining lexical,syntactic and semantic features with Maximum Entropy models for extracting relations[C]//Proceedings of ACL.Morristown,NJ,USA,2004:178-181.
  • 9Longhua Qian,Gougong Zhou,Fang Kong,et al.Exploiting constituent dependencies for tree kernel-based semantic relation extraction[C]//Proceedings of COLING.Manchester,2008:697-704.
  • 10Guodong Zhou,Min Zhang,Dong Hong Ji,et al.Tree Kernel-based Relation Extraction with ContextSensitive Structured Parse Tree Information[C]//Proceedings of EMNLP/CoNLL.Prague,Czech,2007:728-736.

二级参考文献73

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2张素香,文娟,秦颖,袁彩霞,钟义信.实体关系的自动抽取研究[J].哈尔滨工程大学学报,2006,27(B07):370-373. 被引量:10
  • 3董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 4MUC[EB/OL]. http://www. itl. nist. gov/iaui/874. 02/related project/muc/, 1987-1998.
  • 5ACE. The Automatic Context Extraction Project[EB/ OL]. http://www. ldc. upen. edu/Project/ACE, 2002-2005.
  • 6Collins M,Duffy N. Convolution Kernels for Natural Language[C]//NIPS, 2001.
  • 7Zelenko D, Aone C,Riehardella A. Kernel Methods for Relation Extraction[J]. Journal of Machine Learning Research,2003, (2) : 1083-1106.
  • 8Culotta A, Sorensen J. Dependency tree kernels for relation extraetion[C]//ACL, 2004: 423-429.
  • 9Bunescu R. C. and Mooney R. J. 2005. A Shortest Path Dependency Kernel for Relation Extraction[J]. EMNLP 2005: 724-731.
  • 10Zhang M,Zhang J,Su J, et al. A Composite Kernel to Extract Relations between Entities with both Flat and Structured Features[C]//ACL, 2006 : 825-832.

共引文献145

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部