期刊文献+

关于不等式几种常见证明方法的探究 被引量:4

Several Common Methods of Proof of Inequality
下载PDF
导出
摘要 不等式的证明方法灵活多样,技巧性较强.通过对比较法﹑综合法﹑分析法﹑放缩法﹑反证法﹑函数法﹑积分法几种较为常见方法的阐述,为证明不等式提供了一些借鉴. The methods of inequality proof are varied. Via stating the common methods, such as comparison method, the synthetic method, the analytical method, the zooming method, reduction of absurdity the function method, and the integral method, some references are provided for proof of inequality.
出处 《沈阳大学学报(自然科学版)》 CAS 2013年第5期428-430,共3页 Journal of Shenyang University:Natural Science
关键词 不等式 性质 证明 关系 方法 inequality property proof relation method
  • 相关文献

参考文献4

  • 1傅荣强.不等式[M].北京:科学出版社,2001:15-19.
  • 2赵振威.中学数学教材教法第二分册:初等代数研究[M].上海:华东师范大学出版社,2005:252-254.
  • 3唐秀颖.数学题解辞典[M].上海:上海辞书出版社,1984:232-240.
  • 4胡炳生,吴俊.现代观点下的中学数学[M].北京:高等教育出版社,2001:218-223.

共引文献2

同被引文献16

  • 1Ando T, Li C K. The Numerical Range and Numerical Radius[J]. Linear and Multilinear Algebra, 1994,37(1/2/ 3) :221 - 223.
  • 2Donoghue W F. On the Numerical Range of a Bounded Operator[J]. The Michigan Mathematical Journal, 1957,4 (3):261-263.
  • 3Halmos P R. A Hilbert Space Problem Book [M]. Princeton: van Nostrand, 1967.
  • 4Horn R A, Johnson C R. Matrix Analysis [M]. Cambridge: Cambridge University Press, 1991.
  • 5Gustafson K E, Rao D K M. Numerical Range: The Field of Values of Linear Operators and Matrices [M]. New York: Springer, 1997.
  • 6Li C K. A Simple Proof of the Elliptical Range Theorem [J]. Proceedings of the American Mathematical Society, 1996,124(7) : 1985 - 1986.
  • 7Moyls B N, Marcus M D. Field Convexity of a Square Matrix [J]. Proceedings of the American Mathematical Society, 1955,6(6) :981 - 983.
  • 8华东师范大学数学系.数学分析[M]北京院高等教育出版社,2001.
  • 9LiChaoqian,LiYaotang,ZhaoRuijuan.NewInequalities fortheMinimumEigenvalueofM-Matrices[J].Linearand MultilinearAlgebra,2013,61(9):1267 1279.
  • 10Tian Guixian,Huang Tingzhu.Inequalities for the Minimum Eigenvalue of M-Matrices [J]. Electronic JournalofLinearAlgebra,2010,20(3):291 302.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部