摘要
为了有效利用心音信号的非线性特征信息对心音信号进行分类识别,提出一种基于定量递归分析和近似熵的心音特征提取方法。首先利用递归图对心音信号进行定性分析;然后,定量提取心音的非线性特征参数:递归率、确定率、近似熵构成特征矢量;最后将特征矢量输入二叉树支持向量机,对采集到的正常以及5类心脏瓣膜性心音信号进行分类识别。对于文中提取的非线性特征参数,通过统计学分析证明了其有效性。结果表明,该方法能有效识别心音信号。
In order to recognize different types of heart sounds effectively by nonlinear characteristics,a method of feature extraction is proposed based on recurrence quantification analysis and approximate entropy.Firstly,recurrence plots are applied to the qualitative analysis of heart sound signals.Then recurrence rate and determination rate are extracted and combined with approximate entropy to form eigenvectors.Finally,the eigenvectors are put into binary tree support vector machine (BT-SVM) for classifying and recognizing different types of heart sounds.The testing results show that the proposed approach can classify and recognize the pathological heart sound effectively.
出处
《数据采集与处理》
CSCD
北大核心
2013年第5期559-564,共6页
Journal of Data Acquisition and Processing
基金
国家自然科学基金(30770551)资助项目
重庆市新型医院器械重大科技专项(CSTC
2008AC5103)资助项目
关键词
心音信号
定量递归分析
近似熵
二叉树支持向量机
递归图
heart sound signal
recurrence quantification analysis
approximate entropy
binary tree support vector machine (BT-SVM)
recurrence plot