期刊文献+

非同元次分数阶混沌系统的组合同步 被引量:1

Combination Synchronization among Three Identical Incommensurate Fractional-order Chaoic Systems
下载PDF
导出
摘要 本文基于追踪控制的思想,分别利用非同元次分数阶线性系统的稳定性理论与分数阶混沌系统稳定性判定定理给出了控制器的不同选择方案,并从理论上证明了它们都能实现三个非同元次分数阶L u系统的组合同步.最后,通过数值仿真验证理论的正确性和控制策略的有效性. Based on the idea of tracking control, we give two different options of controllers by using the stability theory of incommensurate fractional-order linear systems and the stability determinant theorem of fractional-order chaos systems, respectively. And we prove that they both can achieve the combination synchronization among three incommensurate fractional-order Lu?? systems theoretically. Finally, the numerical simulations are provided to illustrate the correctness of the theory and the effectiveness of the control strategy.
作者 林慧妮
出处 《漳州师范学院学报(自然科学版)》 2013年第3期1-7,共7页 Journal of ZhangZhou Teachers College(Natural Science)
基金 国家自然科学基金项目(61074012) 福建省自然科学基金项目(2011J01025) 福建省教育厅科技项目资助(JA12210)
关键词 组合同步 追踪控制 分数阶混沌系统 稳定性理论 combination synchronization tracking control fractional-order chaos system stability theory
  • 相关文献

参考文献18

  • 1李建芬,李农,陈长兴.利用单驱动变量实现一类分数阶混沌系统的修正投影同步[J].物理学报,2010,59(11):7644-7649. 被引量:4
  • 2Wang X, He Y. Projective synchronization of fractional order chaotic system based on linear separation[J]. Physics Letters A, 2008, 372(4): 435-441.
  • 3Ahmad W M, Harb A M. On nonlinear control design for autonomous chaotic systems of integer and fractional orders[J]. Chaos, Solitons & Fractals, 2003, 18(4): 693-701.
  • 4陈向荣,刘崇新,李永勋.基于非线性观测器的一类分数阶混沌系统完全状态投影同步[J].物理学报,2008,57(3):1453-1457. 被引量:12
  • 5Zhou P, Ding R, Cao Y X. Multi Drive-One Response Synchronization for Fractional-Order Chaotic Systems[J]. Nonlinear Dynamics, 2012, 70(2): 1263-1271.
  • 6Bhalekar S, Daftardar-Gejji V. Synchronization of different fractional order chaotic systems using active control[J]. Communications in Nonlinear Science and Numerical SimulationH, 2010, 150 (11): 3536-3546.
  • 7Yang L, He W, Liu X. Synchronization between a fractional-order system and an integer order system[J]. Computers and Mathematics with Applications, 2011, 62(! 2): 4708-4716.
  • 8Wu X, Lai D, Lu H. Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes[J]. Nonlinear Dynamics, 2012, 69(1-2): 667-683.
  • 9Yuan L G, Yang Q G Parameter identification and synchronization of fractional-order chaotic systems[J]. Commun Nonlinear Sci Numer Simulat, 2012, 170): 305-316.
  • 10Si G, Sun Z, Zhang Y, Chen W. Projective synchronization of different fractional-order chaotic systems with non-identical orders [J]. Nonlinear Analysis: Real World Applications, 2012, 13(4): 1761-1771.

二级参考文献33

共引文献46

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部