期刊文献+

一种非线性过程监控方法 被引量:3

A monitoring method for nonlinear process
原文传递
导出
摘要 实际工业过程都具有非线性等特征。传统的监控方法有将降维后的非线性数据映射到高维线性空间再进行数据处理,实现过程的监控。本文是在一种否定选择算法的基础上,首先利用最大方差展开(MVU)方法对正常高维数据进行降维,再利用否定选择算法直接对降维后的多维非线性数据建立"超球体群"模型,实现对过程的监控,保证工业过程的平稳运行。仿真实验是基于TE模型进行的,仿真结果表明该方法较传统方法及其他改进方法具有更好的监控能力,说明了该方法的有效性。 All of the industrial processes in our society have such characteristics as non-linearity. Some traditional monitoring methods mapped the nonlinear data to the high-dimensional linear space for data dealing, and then monitored the process. This paper is based on a negative selection algorithm, and firstly we deal the normal high-dimensional data with dimension reduction method of Maximum Variance Unfolding (MVU). Then we use the negative selection algorithm to make the 'hyper-sphere group' model with the multidimensional nonlinear data directly after dimension reduction. Thus the monitoring of the process is realized and the smooth operation of the industrial process is ensured. The simulation is based on the TE model, and the result shows the method gets a better monitoring capability comparing with the traditional method and other advanced methods. Eventually, this paper illustrates the effectiveness of the method.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第10期1131-1134,共4页 Computers and Applied Chemistry
基金 国家自然科学基金项目(61134007) 国家863计划项目(2013AA040701):中央高校基本科研业务费 上海市科技攻关项目(12dz1125100) 上海市重点学科建设项目(B504)以及流程工业综合自动化国家重点实验室开放课题基金资助
关键词 非线性 否定选择算法 最大方差展开(MVU)方法 超球体群 non-linearity Negative Selection Algorithm (NSA) method of Maximum Variance Unfolding (MVU) hyper-sphere group
  • 相关文献

参考文献7

二级参考文献71

  • 1宋凯,王海清,李平.PLS质量监控及其在Tennessee Eastman过程中的应用[J].浙江大学学报(工学版),2005,39(5):657-662. 被引量:11
  • 2潘志松,倪桂强,谭琳,胡谷雨.异常检测中单类分类算法和免疫框架设计[J].南京理工大学学报,2006,30(1):48-52. 被引量:5
  • 3吴德会,王晓红.基于PCA-SVM的柴油凝点近红外光谱软测量法[J].自动化仪表,2007,28(5):12-16. 被引量:4
  • 4Rafeeq Ur Rehman.Intrusion detection systems with Snort[M]. New Jersey: Prentice HaU,2005:5-10.
  • 5Jungwon K,Bentley P J.Toward an artificial immune system for network intrusion detection:An investigation of dynamic clonal selection[C].Congress on Evolutionary Computation,2002:1015-1020.
  • 6DE CASTRO L N,Timmis J.Artificial immune systems: a new computational intelligence approach [M]. Berlin: SpringerVerlag,2002:53-59.
  • 7Artificial immune systems[OL].http://www.dca.fee.unicamp, br/ -lnunes/immune.html.
  • 8Segel, Cohen. Design principles for immune system and other distributed autonomous systems [C]. USA: Oxford University Press,2000:361-388.
  • 9Dasgupta D.Workshop on artifical immtme systems and their applications[C].London,UK:Springer,2000:36-37.
  • 10Ishida Y, Verlag Jahr.Immunity-based-systems:a design perspective[M].Berlin: Springer,2004:363 -375.

共引文献50

同被引文献55

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部