期刊文献+

GMM-DPLS间歇过程故障监测与质量预报 被引量:2

Fault monitoring and quality prediction for batch process using GMM-DPLS
原文传递
导出
摘要 工业间歇过程数据普遍具有多阶段、动态和非高斯特性,且轨迹不同步是其固有特征,针对上述问题,提出一种基于高斯混合模型-动态偏最小二乘(GMM-DPLS)的故障监测与质量预报新策略。采用GMM对过程数据进行聚类,客观反映不同阶段操作模态的数据分布特点,实现子阶段划分;针对子阶段不等长问题,采用动态时间规整(DTW)算法同步阶段轨迹,最后对同步后的子阶段分别建立DPLS模型。间歇发酵过程的应用实例表明该策略相比传统单一模型的DPLS方法,能显著提高故障监测效率和质量预报准确性。 In industrial manufacturing, most batch processes are inherently multiphase, dynamic, non-Gaussian behaviors and uneven-length batch processes in nature. To solve the aforementioned problem, a new strategy is proposed base on Gaussian mixture model(GMM)-dynamic partial least squares(DPLS) for batch process monitoring and quality prediction. Using GMM clustering arithmetic, batch process data was divided into several operation stages, since GMM is adopted to discriminate different operation modes. Then, run-to-ran variations among different instances of a phase are synchronized by using dynamic time warping (DTW), and sub-phase DPLS models were developed for every phases. At last, the proposed method was applied to batch fermentation process. The results demonstrate that the more efficiency and accuracy of fault detection and quality prediction compared to the traditional DPLS.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2013年第10期1167-1172,共6页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(60704036 61364009) 内蒙古工业大学科学研究项目(ZS0201037)
关键词 间歇过程 高斯混合模型 偏最小二乘 动态时间规整 batch process Gaussian mixture model partial least squares dynamic time warping
  • 相关文献

参考文献3

二级参考文献13

  • 1胡正平,谭营.基于SVDD的交互式区域增长图像分割算法[J].仪器仪表学报,2006,27(z3):2114-2115. 被引量:2
  • 2陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4Krouti T. Abnormal situation detection, three-way data and projection methods: robust data archiving and modeling for industrial applications. Annual Reviews in Control, 2003, 27:131-139
  • 5Srinivasan R, Qian Mingsheng. Online fault diagnosis and state identification during process transitions using dynamic locus analysis. Chemical Engineering Science, 2006, 61: 6109-6132
  • 6Kassidas A, Taylor P, MacGregor J F. Off-line diagnosis of deterministic faults in continuous dynamic multivariable processes using speech recognition methods. Journal of Process Control, 1998, 8(5/6): 381-393
  • 7Kassidas A, MacGregor J F, Taylor P. Synchronization of batch trajectories using dynamic time warping. AIChE Journal, 1998, 44 (4): 864-875
  • 8Li Y, Wen C L, Xie Z, Xu X H. Synchronization of batch trajectory based on multi-scale dynamic time warping. Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2004, 4:2403-2408
  • 9Itakura F. Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics Speech and Signal Processing ASSP 23, 1975, 1:67-72
  • 10Smith T F, Waterman M S. Identification of common molecular subsequence. Journal of Molecular Biology, 1981, 147:195- 197

共引文献76

同被引文献24

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部